|试卷下载
终身会员
搜索
    上传资料 赚现金
    贵州省毕节织金县2021-2022学年中考三模数学试题含解析
    立即下载
    加入资料篮
    贵州省毕节织金县2021-2022学年中考三模数学试题含解析01
    贵州省毕节织金县2021-2022学年中考三模数学试题含解析02
    贵州省毕节织金县2021-2022学年中考三模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省毕节织金县2021-2022学年中考三模数学试题含解析

    展开
    这是一份贵州省毕节织金县2021-2022学年中考三模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是(  )
    A. B. C. D.
    2.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是(  )

    A.选科目E的有5人
    B.选科目A的扇形圆心角是120°
    C.选科目D的人数占体育社团人数的
    D.据此估计全校1000名八年级同学,选择科目B的有140人
    3.等腰三角形一边长等于5,一边长等于10,它的周长是( )
    A.20 B.25 C.20或25 D.15
    4.下列图形中为正方体的平面展开图的是(  )
    A. B.
    C. D.
    5.在解方程-1=时,两边同时乘6,去分母后,正确的是(  )
    A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)
    C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)
    6.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
    A.2(x1)+3x=13 B.2(x+1)+3x=13
    C.2x+3(x+1)=13 D.2x+3(x1)=13
    7.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为(  )

    A.2:3 B.3:2 C.4:5 D.4:9
    8.已知等边三角形的内切圆半径,外接圆半径和高的比是(  )
    A.1:2: B.2:3:4 C.1::2 D.1:2:3
    9.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
    A.0 B.1 C.2 D.3
    10.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    11.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )

    A.四边形AEDF是平行四边形
    B.若∠BAC=90°,则四边形AEDF是矩形
    C.若AD平分∠BAC,则四边形AEDF是矩形
    D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
    12.当函数y=(x-1)2-2的函数值y随着x的增大而减小时,x的取值范围是(  )
    A. B. C. D.x为任意实数
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在平面直角坐标系中,△的顶点、在坐标轴上,点的坐标是(2,2).将△ABC沿轴向左平移得到△A1B1C1,点落在函数y=-.如果此时四边形的面积等于,那么点的坐标是________.

    14.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    15.若式子在实数范围内有意义,则x的取值范围是_______.
    16.两个等腰直角三角板如图放置,点F为BC的中点,AG=1,BG=3,则CH的长为__________.

    17.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.

    18.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.
    (1)求抛物线的表达式;
    (2)求∠CAB的正切值;
    (3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.

    20.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.

    21.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△ABC; 请画出△ABC关于原点对称的△ABC; 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.

    22.(8分)列方程解应用题
    八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
    23.(8分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.

    24.(10分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)
    (1)当y=0时,求x的值.
    (2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cot∠MCB的值.
    25.(10分)计算: .
    26.(12分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
    求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
    27.(12分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
    【详解】
    ∵这组数中无理数有,共2个,
    ∴卡片上的数为无理数的概率是 .
    故选B.
    【点睛】
    本题考查了无理数的定义及概率的计算.
    2、B
    【解析】
    A选项先求出调查的学生人数,再求选科目E的人数来判定,
    B选项先求出A科目人数,再利用×360°判定即可,
    C选项中由D的人数及总人数即可判定,
    D选项利用总人数乘以样本中B人数所占比例即可判定.
    【详解】
    解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,
    选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,
    选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,
    估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;
    故选B.
    【点睛】
    本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.
    3、B
    【解析】
    题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
    【详解】
    当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
    当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
    故选B.
    4、C
    【解析】
    利用正方体及其表面展开图的特点依次判断解题.
    【详解】
    由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.
    【点睛】
    本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.
    5、D
    【解析】
    解: ,∴3(x﹣1)﹣6=2(3x+1),故选D.
    点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.
    6、A
    【解析】
    要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.
    【详解】
    设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,
    根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,
    可得方程为:2(x-1)+3x=1.
    故选A.
    【点睛】
    列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.
    7、A
    【解析】
    根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
    【详解】
    由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
    ∴△A′B′C′∽△ABC,
    ∵△A'B'C'与△ABC的面积的比4:9,
    ∴△A'B'C'与△ABC的相似比为2:3,
    ∴ ,
    故选A.
    【点睛】
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    8、D
    【解析】
    试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;
    在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,
    所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.

    考点:正多边形和圆.
    9、D
    【解析】
    解:如图:

    利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
    故选:D.
    10、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    11、C
    【解析】
    A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,
    ∴DE∥AF,DF∥AE,
    ∴四边形AEDF是平行四边形;即A正确;
    B选项,∵四边形AEDF是平行四边形,∠BAC=90°,
    ∴四边形AEDF是矩形;即B正确;
    C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;
    D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.
    故选C.
    12、B
    【解析】
    分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.
    详解:对称轴是:x=1,且开口向上,如图所示,
    ∴当x<1时,函数值y随着x的增大而减小;
    故选B.

    点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、 (-5, )
    【解析】
    分析:依据点B的坐标是(2,2),BB2∥AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=﹣的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(﹣5,).
    详解:如图,∵点B的坐标是(2,2),BB2∥AA2,∴点B2的纵坐标为2.又∵点B2落在函数y=﹣的图象上,∴当y=2时,x=﹣3,∴BB2=AA2=5=CC2.又∵四边形AA2C2C的面积等于,∴AA2×OC=,∴OC=,∴点C2的坐标是(﹣5,).
    故答案为(﹣5,).

    点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.
    14、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    15、x≠﹣1
    【解析】
    分式有意义的条件是分母不等于零.
    【详解】
    ∵式子在实数范围内有意义,
    ∴x+1≠0,解得:x≠-1.
    故答案是:x≠-1.
    【点睛】
    考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
    16、
    【解析】
    依据∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,进而得到△BFG∽△CHF,依据相似三角形的性质,即可得到=,即=,即可得到CH=.
    【详解】
    解:∵AG=1,BG=3,
    ∴AB=4,
    ∵△ABC是等腰直角三角形,
    ∴BC=4,∠B=∠C=45°,
    ∵F是BC的中点,
    ∴BF=CF=2,
    ∵△DEF是等腰直角三角形,
    ∴∠DFE=45°,
    ∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,
    又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,
    ∴∠BGF=∠CFH,
    ∴△BFG∽△CHF,
    ∴=,即=,
    ∴CH=,
    故答案为.
    【点睛】
    本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.
    17、1
    【解析】
    ∵MN∥BC,
    ∴△AMN∽△ABC,
    ∴,即,
    ∴MN=1.
    故答案为1.
    18、
    【解析】
    先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.
    【详解】
    ∵从中随意摸出两个球的所有可能的结果个数是12,
    随意摸出两个球是红球的结果个数是6,
    ∴从中随意摸出两个球的概率=;
    故答案为:.

    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)
    【解析】
    (4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;
    (4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
    (3) 连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.
    【详解】
    解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,
    ∵a<0,抛物线开口向下,又与x轴有交点,
    ∴抛物线的顶点C在x轴的上方,
    由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).
    可设此抛物线的表达式是y=a(x+4)4+4,
    由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.
    因此,抛物线的表达式是y=﹣x4﹣4x+3.
    (4)如图4,

    点B的坐标是(0,3).连接BC.
    ∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,
    得AB4+BC4=AC4.
    ∴△ABC为直角三角形,∠ABC=90°,
    所以tan∠CAB=.
    即∠CAB的正切值等于.
    (3)如图4,连接BC,
    ∵OA=OB=3,∠AOB=90°,
    ∴△AOB是等腰直角三角形,
    ∴∠BAP=∠ABO=45°,
    ∵∠CAO=∠ABP,
    ∴∠CAB=∠OBP,
    ∵∠ABC=∠BOP=90°,
    ∴△ACB∽△BPO,
    ∴,
    ∴,OP=4,
    ∴点P的坐标是(4,0).
    【点睛】
    本题主要考查二次函数的图像与性质,综合性大.
    20、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.
    21、(1)图形见解析;
    (2)图形见解析;
    (3)图形见解析,点P的坐标为:(2,0)
    【解析】
    (1)按题目的要求平移就可以了
    关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
    (3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
    【详解】

    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    (3)△PAB如图所示,点P的坐标为:(2,0)
    【点睛】
    1、图形的平移;2、中心对称;3、轴对称的应用
    22、15
    【解析】
    试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
    试题解析:
    解:设骑车学生的速度为,由题意得
    ,
    解得 .
    经检验是原方程的解.
    答: 骑车学生的速度为15.
    23、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    24、(1),;(2)
    【解析】
    (1)当y=0,则x2-4x-5=0,解方程即可得到x的值.
    (2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cot∠MCB.
    【详解】
    (1)把代入函数解析式得,
    即,
    解得:,.
    (2)把代入得,即得,
    ∵二次函数,与轴的交点为,∴点坐标为.
    设直线的解析式为,代入,得解得,
    ∴,
    ∴点坐标为,
    在中,又∵
    ∴.
    【点睛】
    本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.
    25、10
    【解析】
    【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
    【详解】原式=1+9-+4
    =10-+
    =10.
    【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
    26、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
    【解析】
    (1)可用待定系数法来确定y与x之间的函数关系式;
    (2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
    (3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
    【详解】
    (1)由题意得: .
    故y与x之间的函数关系式为:y=-10x+700,
    (2)由题意,得
    -10x+700≥240,
    解得x≤46,
    设利润为w=(x-30)•y=(x-30)(-10x+700),

    w=-10x2+1000x-21000=-10(x-50)2+4000,
    ∵-10<0,
    ∴x<50时,w随x的增大而增大,
    ∴x=46时,w大=-10(46-50)2+4000=3840,
    答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
    (3)w-150=-10x2+1000x-21000-150=3600,
    -10(x-50)2=-250,
    x-50=±5,
    x1=55,x2=45,
    如图所示,由图象得:
    当45≤x≤55时,捐款后每天剩余利润不低于3600元.
    【点睛】
    此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
    27、见解析
    【解析】
    根据内接正四边形的作图方法画出图,保留作图痕迹即可.
    【详解】

    任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.
    【点睛】
    此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.

    相关试卷

    2022年贵州省毕节织金县联考中考数学押题试卷含解析: 这是一份2022年贵州省毕节织金县联考中考数学押题试卷含解析,共23页。试卷主要包含了化简的结果是,下列计算正确的是,老师在微信群发了这样一个图等内容,欢迎下载使用。

    2021-2022学年贵州省毕节市织金县重点名校中考猜题数学试卷含解析: 这是一份2021-2022学年贵州省毕节市织金县重点名校中考猜题数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    贵州省毕节市织金县重点名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份贵州省毕节市织金县重点名校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列各式中,正确的是,tan45º的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map