![吉林省长春德惠市2022年中考猜题数学试卷含解析01](http://www.enxinlong.com/img-preview/2/3/13533355/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省长春德惠市2022年中考猜题数学试卷含解析02](http://www.enxinlong.com/img-preview/2/3/13533355/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![吉林省长春德惠市2022年中考猜题数学试卷含解析03](http://www.enxinlong.com/img-preview/2/3/13533355/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
吉林省长春德惠市2022年中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
2.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC= ( )
A. B.2 C.3 D.+2
3.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是 ( )
A.-3 B.0 C.3 D.9
4.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
5.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是
A.射线OE是∠AOB的平分线
B.△COD是等腰三角形
C.C、D两点关于OE所在直线对称
D.O、E两点关于CD所在直线对称
6.若 ,则括号内的数是
A. B. C.2 D.8
7.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
8.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
9.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
10.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为( )
A.:1 B.2: C.2:1 D.29:14
二、填空题(共7小题,每小题3分,满分21分)
11.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
12.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .
13.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.
14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_____.
15.已知是方程组的解,则3a﹣b的算术平方根是_____.
16.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则=
17.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
三、解答题(共7小题,满分69分)
18.(10分)(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.
(1)求证:直线CD为⊙O的切线;
(2)若AB=5,BC=4,求线段CD的长.
19.(5分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
20.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)
21.(10分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
当的半径为1时.
在点、、中,的“特征点”是______;
点P在直线上,若点P为的“特征点”求b的取值范围;
的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
22.(10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
(1)如图1,线段EH、CH、AE之间的数量关系是 ;
(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
23.(12分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
24.(14分)解不等式组:.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
2、C
【解析】
试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.
考点:角平分线的性质和中垂线的性质.
3、D
【解析】
解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;
把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;
把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;
把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;
把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;
把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;
把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;
把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.
4、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
5、D
【解析】
试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.
∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
∴△EOC≌△EOD(SSS).
∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
B、根据作图得到OC=OD,
∴△COD是等腰三角形,正确,不符合题意.
C、根据作图得到OC=OD,
又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
∴C、D两点关于OE所在直线对称,正确,不符合题意.
D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
∴O、E两点关于CD所在直线不对称,错误,符合题意.
故选D.
6、C
【解析】
根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.
【详解】
解:,
故选:C.
【点睛】
本题考查了有理数的减法,减去一个数等于加上这个数的相反数.
7、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
8、B
【解析】
试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
∴⊙C的半径为,故选B.
考点:圆的切线的性质;勾股定理.
9、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
10、A
【解析】
试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
故选A.
考点:反比例函数系数k的几何意义
二、填空题(共7小题,每小题3分,满分21分)
11、100(1+x)2=121
【解析】
根据题意给出的等量关系即可求出答案.
【详解】
由题意可知:100(1+x)2=121
故答案为:100(1+x)2=121
【点睛】
本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
12、1
【解析】
利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
【详解】
解:设AF=a(a<2),则F(a,2),E(2,a),
∴FD=DE=2−a,
∴S△DEF=DF•DE==,
解得a=或a=(不合题意,舍去),
∴F(,2),
把点F(,2)代入
解得:k=1,
故答案为1.
【点睛】
本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
13、(2n﹣1,2n﹣1).
【解析】
解:∵y=x-1与x轴交于点A1,
∴A1点坐标(1,0),
∵四边形A1B1C1O是正方形,
∴B1坐标(1,1),
∵C1A2∥x轴,
∴A2坐标(2,1),
∵四边形A2B2C2C1是正方形,
∴B2坐标(2,3),
∵C2A3∥x轴,
∴A3坐标(4,3),
∵四边形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐标(2n-1,2n-1).
故答案为(2n-1,2n-1).
14、1
【解析】
连接AC交OB于D,由菱形的性质可知.根据反比例函数中k的几何意义,得出△AOD的面积=1,从而求出菱形OABC的面积=△AOD的面积的4倍.
【详解】
连接AC交OB于D.
四边形OABC是菱形,
.
点A在反比例函数的图象上,
的面积,
菱形OABC的面积=的面积=1.
【点睛】
本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义.解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即.
15、2.
【解析】
灵活运用方程的性质求解即可。
【详解】
解:由是方程组的解,可得满足方程组,
由①+②的,3x-y=8,即可3a-b=8,
故3a﹣b的算术平方根是,
故答案:
【点睛】
本题主要考查二元一次方程组的性质及其解法。
16、
【解析】
连接AC,过点C作CE⊥AB的延长线于点E,,如图,先在Rt△BEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断△AEC为等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.
【详解】
连接AC,过点C作CE⊥AB的延长线于点E,
∵∠ABC=2∠D=120°, ∴∠D=60°, ∵AD=CD, ∴△ADC是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°, ∴∠ACB=∠DCB-∠DCA=75°-60°=15°, ∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°, ∴AE=CE,∠EBC=45°+15°=60°, ∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=,在RT△AEC中,AC=,∴,故答案为.
【点睛】
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键.
17、x≠2 x≥3
【解析】
根据分式的意义和二次根式的意义,分别求解.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2;
根据二次根式的意义得2x-6≥0,解得x≥3.
故答案为: x≠2, x≥3.
【点睛】
数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
三、解答题(共7小题,满分69分)
18、(1)证明见试题解析;(2).
【解析】
试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.
试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD为⊙O的切线;
(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.
考点:切线的判定.
19、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
20、30米
【解析】
设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.
【详解】
由题意得,∠ABD=30°,∠ACD=45°,BC=60m,
设AD=xm,
在Rt△ACD中,∵tan∠ACD=,
∴CD=AD=x,
∴BD=BC+CD=x+60,
在Rt△ABD中,∵tan∠ABD=,
∴,
∴米,
答:山高AD为30米.
【点睛】
本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
21、(1)①、;②(2)或,.
【解析】
据若,则点P为的“特征点”,可得答案;
根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
【详解】
解:,,
点是的“特征点”;
,,
点是的“特征点”;
,,
点不是的“特征点”;
故答案为、
如图1,
在上,若存在的“特征点”点P,点O到直线的距离.
直线交y轴于点E,过O作直线于点H.
因为.
在中,可知.
可得同理可得.
的取值范围是:
如图2
,
设C点坐标为,
直线,.
,,
,.
.
,
线段MN上的所有点都不是的“特征点”,
,
即,
解得或,
点C的横坐标的取值范围是或,.
故答案为 :(1)①、;②(2)或,.
【点睛】
本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
22、 (1) EH2+CH2=AE2;(2)见解析.
【解析】
分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
详解:
(1)EH2+CH2=AE2,
如图1,过E作EM⊥AD于M,
∵四边形ABCD是菱形,
∴AD=CD,∠ADE=∠CDE,
∵EH⊥CD,
∴∠DME=∠DHE=90°,
在△DME与△DHE中,
,
∴△DME≌△DHE,
∴EM=EH,DM=DH,
∴AM=CH,
在Rt△AME中,AE2=AM2+EM2,
∴AE2=EH2+CH2;
故答案为:EH2+CH2=AE2;
(2)如图2,
∵菱形ABCD,∠ADC=60°,
∴∠BDC=∠BDA=30°,DA=DC,
∵EH⊥CD,
∴∠DEH=60°,
在CH上截取HG,使HG=EH,
∵DH⊥EG,∴ED=DG,
又∵∠DEG=60°,
∴△DEG是等边三角形,
∴∠EDG=60°,
∵∠EDG=∠ADC=60°,
∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
∴∠ADE=∠CDG,
在△DAE与△DCG中,
,
∴△DAE≌△DCG,
∴AE=GC,
∵CH=CG+GH,
∴CH=AE+EH.
点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
23、调整后的滑梯AD比原滑梯AB增加2.5米
【解析】
试题分析: Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.
试题解析: Rt△ABD中,
∵AC=3米,
∴AD=2AC=6(m)
∵在Rt△ABC中,
∴AD−AB=6−3.53≈2.5(m).
∴调整后的滑梯AD比原滑梯AB增加2.5米.
24、﹣4≤x<1
【解析】
先求出各不等式的
【详解】
解不等式x﹣1<2,得:x<1,
解不等式2x+1≥x﹣1,得:x≥﹣4,
则不等式组的解集为﹣4≤x<1.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
2023年吉林省长春市德惠市中考数学质检试卷(一)(含解析): 这是一份2023年吉林省长春市德惠市中考数学质检试卷(一)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春德惠市2021-2022学年中考试题猜想数学试卷含解析: 这是一份吉林省长春德惠市2021-2022学年中考试题猜想数学试卷含解析,共24页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
2022年吉林省长春市五校中考数学猜题卷含解析: 这是一份2022年吉林省长春市五校中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。