江苏省海安八校联考2022年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
2.不等式组的解集表示在数轴上正确的是( )
A. B. C. D.
3.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
4.下列二次根式中,为最简二次根式的是( )
A. B. C. D.
5.下列美丽的壮锦图案是中心对称图形的是( )
A. B. C. D.
6.的绝对值是( )
A.8 B.﹣8 C. D.﹣
7.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.10π B.15π C.20π D.30π
8.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )
A.14 B.12 C.12或14 D.以上都不对
9.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
10.下列运算中,正确的是 ( )
A.x2+5x2=6x4 B.x3 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
12.分解因式:2a4﹣4a2+2=_____.
13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.
14.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.
15.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.
16.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.
求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.
①若点P在线段DA上,且△ACP的面积为10,求t的值;
②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
18.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.
求证:(1)AE=BF;(2)AE⊥BF.
19.(8分)在中, , 是的角平分线,交于点 .
(1)求的长;
(2)求的长.
20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
21.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
22.(10分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:
(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
23.(12分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F.
(1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.
(2)已知,BE=2,CD=1.
①求⊙O的半径;
②若△CMF为等腰三角形,求AM的长(结果保留根号).
24.由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
2、C
【解析】
根据题意先解出的解集是,
把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
表示时要注意方向向左,起始的标记为实心圆点,
综上所述C的表示符合这些条件.
故应选C.
3、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
4、B
【解析】
最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
【详解】
A. =3, 不是最简二次根式;
B. ,最简二次根式;
C. =,不是最简二次根式;
D. =,不是最简二次根式.
故选:B
【点睛】
本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
5、A
【解析】
【分析】根据中心对称图形的定义逐项进行判断即可得.
【详解】A、是中心对称图形,故此选项正确;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误,
故选A.
【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
6、C
【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
【详解】
解:.
故选
【点睛】
此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
7、B
【解析】
由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
∴圆锥的侧面积=lr=×6π×5=15π,故选B
8、B
【解析】
解方程得:x=5或x=1.
当x=1时,3+4=1,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,
故选B.
9、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
10、C
【解析】
分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.
详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;
D.,本项错误.故选C.
点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
详解:∵==,解得:旗杆的高度=×30=1.
故答案为1.
点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
12、1(a+1)1(a﹣1)1.
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,
故答案为:1(a+1)1(a﹣1)1
【点睛】
本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.
13、
【解析】
已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
14、46
【解析】
试卷分析:根据平行线的性质和平角的定义即可得到结论.
解:∵直线a∥b,
∴∠3=∠1=34°,
∵∠BAC=100°,
∴∠2=180°−34°−100°=46°,
故答案为46°.
15、2.04×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
解:204000用科学记数法表示2.04×1.
故答案为2.04×1.
点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、8。
【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
由函数图象得:进水管每分钟的进水量为:20÷4=5升。
设出水管每分钟的出水量为a升,由函数图象,得,解得:。
∴关闭进水管后出水管放完水的时间为:(分钟)。
三、解答题(共8题,共72分)
17、(1)4,5;(2)①7;②4或 或或8.
【解析】
分别令可得b和m的值;
根据的面积公式列等式可得t的值;
存在,分三种情况:
当时,如图1,当时,如图2,当时,如图3,分别求t的值即可.
【详解】
把点代入直线中得:,
点,
直线过点C,
,;
由题意得:,
中,当时,,
,
,
中,当时,,
,
,
,
的面积为10,
,
,
则t的值7秒;
存在,分三种情况:
当时,如图1,过C作于E,
,
,
即;
当时,如图2,
,
,
;
当时,如图3,
,
,
,
,
,
,即;
综上,当秒或秒或秒或8秒时,为等腰三角形.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
18、见解析
【解析】
(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
【详解】
解:(1)证明:在△AEO与△BFO中,
∵Rt△OAB与Rt△EOF等腰直角三角形,
∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
∴△AEO≌△BFO,
∴AE=BF;
( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO
由(1)知:∠OAC=∠OBF,
∴∠BDA=∠AOB=90°,
∴AE⊥BF.
19、(1)10;(2)的长为
【解析】
(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.
【详解】
解:(1) 在中,
;
(2 )过点作于,
平分
,
在和中
,
.
设,则
在中,
解得
即的长为
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.
20、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
21、 (1) ;(2).
【解析】
(1)直接利用概率公式求解;
(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
【详解】
(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
(2)画树状图为:
共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
22、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
【解析】
(1)本次抽查的学生人数:18÷15%=120(人);
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
【详解】
解:(1)本次抽查的学生人数:18÷15%=120(人),
答:本次抽查的学生人数是120人;
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
补全条形统计图如下:
“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
故答案为126;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
答:该校“家人接送”上学的学生约有500人.
【点睛】
本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
23、(1)详见解析;(2)2;②1或
【解析】
(1)想办法证明∠AMD=∠ADC,∠FMC=∠ADC即可解决问题;
(2)①在Rt△OCE中,利用勾股定理构建方程即可解决问题;
②分两种情形讨论求解即可.
【详解】
解:(1)证明:如图②中,连接AC、AD.
∵AB⊥CD,
∴CE=ED,
∴AC=AD,
∴∠ACD=∠ADC,
∵∠AMD=∠ACD,
∴∠AMD=∠ADC,
∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,
∴∠FMC=∠ADC,
∴∠FMC=∠ADC,
∴∠FMC=∠AMD.
(2)解:①如图②﹣1中,连接OC.设⊙O的半径为r.
在Rt△OCE中,∵OC2=OE2+EC2,
∴r2=(r﹣2)2+42,
∴r=2.
②∵∠FMC=∠ACD>∠F,
∴只有两种情形:MF=FC,FM=MC.
如图③中,当FM=FC时,易证明CM∥AD,
∴,
∴AM=CD=1.
如图④中,当MC=MF时,连接MO,延长MO交AD于H.
∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,
∴∠ADM=∠MAD,
∴MA=MD,
∴,
∴MH⊥AD,AH=DH,
在Rt△AED中,AD=,
∴AH=,
∵tan∠DAE=,
∴OH=,
∴MH=2+,
在Rt△AMH中,AM=.
【点睛】
本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积.
24、(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.
【解析】
(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x的分式方程,解之经检验即可得出结论;
(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.
【详解】
(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,
根据题意得:
解得:x=5,
经检验,x=5是所列分式方程的解且符合题意.
∴3x=15,2x=1.
答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.
(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,
∴甲、乙两队每日完成的工作量之比是2:3,
∴甲队应得的报酬为(元),
乙队应得的报酬为4000﹣1600=2400(元).
答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.
【点睛】
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析: 这是一份江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了如图,,,则的大小是,如图所示的几何体的俯视图是,若2<<3,则a的值可以是,点P等内容,欢迎下载使用。
江苏省海安八校联考2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省海安八校联考2021-2022学年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022年江苏省姜堰区六校联考中考适应性考试数学试题含解析: 这是一份2022年江苏省姜堰区六校联考中考适应性考试数学试题含解析,共20页。试卷主要包含了方程的解是,如图,立体图形的俯视图是等内容,欢迎下载使用。