|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析
    立即下载
    加入资料篮
    江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析01
    江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析02
    江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析

    展开
    这是一份江苏省淮安市洪泽区教育联盟校2022年中考数学模试卷含解析,共19页。试卷主要包含了如图,在中,边上的高是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列运算正确的是(  )
    A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
    2.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为(  )

    A.38° B.39° C.42° D.48°
    3.4的平方根是( )
    A.16 B.2 C.±2 D.±
    4.下列实数中,为无理数的是(  )
    A. B. C.﹣5 D.0.3156
    5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
    A. B.
    C. D.
    6.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:

    下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
    A.① B.② C.①③ D.②③
    7.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    8.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是

    A. B. C. D.
    9.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是(  )

    A.1m B.m C.3m D.m
    10.如图,在中,边上的高是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .

    12.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算△ABC的周长等于_____.
    (2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
    ___________________________.

    13.如图,中,,,,,平分,与相交于点,则的长等于_____.

    14.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.

    15.计算:的结果为_____.
    16.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.
    三、解答题(共8题,共72分)
    17.(8分)解不等式组,请结合题意填空,完成本题的解答.
    (1)解不等式①,得   ;
    (2)解不等式②,得   ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式的解集为   .
    18.(8分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.

    19.(8分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
    (1)求购进甲、乙两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
    (3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?
    20.(8分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.

    (1)指出条形统计图中存在的错误,并求出正确值;
    (2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?
    (3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?
    21.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.
    (1)求反比例函数y=的表达式;
    (2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.

    22.(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
    23.(12分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. 

    (1)求证:CD是⊙O的切线; 
    (2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
    24.化简:(x+7)(x-6)-(x-2)(x+1)



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
    详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
    根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
    根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
    根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
    故选D.
    点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.
    2、A
    【解析】
    分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.
    详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
    故选A.
    点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
    3、C
    【解析】
    试题解析:∵(±2)2=4,
    ∴4的平方根是±2,
    故选C.
    考点:平方根.
    4、B
    【解析】
    根据无理数的定义解答即可.
    【详解】
    选项A、是分数,是有理数;
    选项B、是无理数;
    选项C、﹣5为有理数;
    选项D、0.3156是有理数;
    故选B.
    【点睛】
    本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.
    5、A
    【解析】
    若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
    解:设走路线一时的平均速度为x千米/小时,

    故选A.
    6、B
    【解析】
    根据图形和各个小题的说法可以判断是否正确,从而解答本题
    【详解】
    当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
    随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
    虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
    故选:B.
    【点睛】
    此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
    7、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
    8、A
    【解析】
    由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
    【详解】
    解:由题意得,,,

    由勾股定理得,,

    故选:A.
    【点睛】
    本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
    9、B
    【解析】
    由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
    【详解】
    由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
    ∵AG⊥EH,CH⊥EH,
    ∴∠AGE=∠CHE=90°,
    ∵∠AEG=∠CEH,
    ∴△AEG∽△CEH,
    ∴ == ,即 =,
    解得:GH=,
    则BD=GH=m,
    故选:B.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
    10、D
    【解析】
    根据三角形的高线的定义解答.
    【详解】
    根据高的定义,AF为△ABC中BC边上的高.
    故选D.
    【点睛】
    本题考查了三角形的高的定义,熟记概念是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、107°
    【解析】
    过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.
    【详解】
    过C作d∥a, ∴a∥b, ∴a∥b∥d,

    ∵四边形ABCD是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°,
    ∵b∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,
    ∵a∥d, ∴∠1=∠5=107°,故答案为107°.
    【点睛】
    本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.
    12、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【解析】
    (1)利用勾股定理求出AB,从而得到△ABC的周长;
    (2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
    【详解】
    解:(1)∵AC=3,BC=4,∠C=90º,
    ∴根据勾股定理得AB=5,
    ∴△ABC的周长=5+4+3=12.
    (2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。

    故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【点睛】
    本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
    13、3
    【解析】
    如图,延长CE、DE,分别交AB于G、H,由∠BAD=∠ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CG⊥AB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.
    【详解】
    如图,延长CE、DE,分别交AB于G、H,
    ∵∠BAD=∠ADE=60°,
    ∴△ADH是等边三角形,
    ∴DH=AD=AH=5,∠DHA=60°,
    ∵AC=BC,CE平分∠ACB,∠ACB=90°,
    ∴AB==8,AG=AB=4,CG⊥AB,
    ∴GH=AH=AG=5-4=1,
    ∵∠DHA=60°,
    ∴∠GEH=30°,
    ∴EH=2GH=2
    ∴DE=DH-EH=5=2=3.

    故答案为:3
    【点睛】
    本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.
    14、 (1,0)
    【解析】
    分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.
    详解:
    如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.

    若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
    由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
    可知△CDE的周长最小,
    ∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
    ∴BC=3,D′O=DO=2,D′B=6,
    ∵OE∥BC,
    ∴Rt△D′OE∽Rt△D′BC,有
    ∴OE=1,
    ∴点E的坐标为(1,0).
    故答案为:(1,0).
    点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.
    15、
    【解析】
    分析:根据二次根式的性质先化简,再合并同类二次根式即可.
    详解:原式=3-5=﹣2.
    点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
    16、
    【解析】
    用黑球的个数除以总球的个数即可得出黑球的概率.
    【详解】
    解:∵袋子中共有5个球,有2个黑球,
    ∴从袋子中随机摸出一个球,它是黑球的概率为;
    故答案为.
    【点睛】
    本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

    三、解答题(共8题,共72分)
    17、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
    【解析】
    先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)解不等式①,得x≤1,
    (1)解不等式②,得x≥﹣1,
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为﹣1≤x≤1,
    故答案为x≤1,x≥﹣1,﹣1≤x≤1.
    【点睛】
    本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
    18、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.
    19、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.
    【解析】
    分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;
    (2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;
    (3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.
    详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.
    由题意得:,
    解得:
    答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.
    (2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:
    100a+50(80﹣a)≤7100
    解得a≤1
    又a≥60
    所以a可取60、61、1.
    即有三种进货方案.
    方案一:甲种纪念品60件,乙种纪念品20件;
    方案二:甲种纪念品61件,乙种纪念品19件;
    方案三:甲种纪念品1件,乙种纪念品18件.
    (3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400
    所以W是a的一次函数,﹣10<0,W随a的增大而减小.
    所以当a最小时,W最大.此时W=﹣10×60+2400=1800
    答:若全部销售完,方案一获利最大,最大利润是1800元.
    点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.
    20、(1)见解析;(2)140人;(1).
    【解析】
    (1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;
    (2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;
    (1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.
    【详解】
    (1)由统计图可得:

    (1分)
    (2分)

    (4分)
    (5分)
    甲(人)
    0
    1
    7
    6
    4
    乙(人)
    2
    2
    5
    8
    4
    全体(%)
    5
    12.5
    10
    15
    17.5
    乙组得分的人数统计有误,
    理由:由条形统计图和扇形统计图的对应可得,
    2÷5%=40,(1+2)÷12.5%=40,
    (7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,
    故乙组得5分的人数统计有误,
    正确人数应为:40×17.5%﹣4=1.
    (2)800×(5%+12.5%)=140(人);
    (1)如图得:

    ∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,
    ∴所选两人正好分在一组的概率是:.
    【点睛】
    本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.
    21、(1)y=;(1)(﹣1,0)或(1,0)
    【解析】
    (1)把A的坐标代入反比例函数的表达式,即可求出答案;
    (1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.
    【详解】
    (1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;
    (1)∵A(,1),OA⊥AB,AB⊥x轴于C,∴OC,AC=1,OA1.
    ∵tanA,∴∠A=60°.
    ∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA•OB1×1.
    ∵S△AOPS△AOB,∴OP×AC.
    ∵AC=1,∴OP=1,∴点P的坐标为(﹣1,0)或(1,0).

    【点睛】
    本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.
    22、A、B两种型号的空调购买价分别为2120元、2320元
    【解析】
    试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
    试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
    解得:
    答:A、B两种型号的空调购买价分别为2120元、2320元
    23、(1)证明见解析;(2).
    【解析】
    试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
    而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
    根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
    试题解析:(1)连接OD.
    ∵OB=OD,
    ∴∠OBD=∠BDO.
    ∵∠CDA=∠CBD,
    ∴∠CDA=∠ODB.
    又∵AB是⊙O的直径,∴∠ADB=90°,
    ∴∠ADO+∠ODB=90°,
    ∴∠ADO+∠CDA=90°,即∠CDO=90°,
    ∴OD⊥CD.
    ∵OD是⊙O的半径,
    ∴CD是⊙O的切线;

    (2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,

    BC=6,∴CD=4.
    ∵CE,BE是⊙O的切线,
    ∴BE=DE,BE⊥BC,
    ∴BE2+BC2=EC2,
    即BE2+62=(4+BE)2,
    解得BE=.
    24、2x-40.
    【解析】
    原式利用多项式乘以多项式法则计算,去括号合并即可.
    【详解】
    解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

    相关试卷

    2023年江苏省淮安市洪泽区中考数学一模试卷(含解析): 这是一份2023年江苏省淮安市洪泽区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省淮安市洪泽区教育联盟校2021-2022学年中考联考数学试题含解析: 这是一份江苏省淮安市洪泽区教育联盟校2021-2022学年中考联考数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,cs30°=等内容,欢迎下载使用。

    2022年江苏省淮安市洪泽区中考数学最后冲刺模拟试卷含解析: 这是一份2022年江苏省淮安市洪泽区中考数学最后冲刺模拟试卷含解析,共14页。试卷主要包含了下列等式正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map