年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析第1页
    江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析第2页
    江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析

    展开

    这是一份江苏省句容市、丹阳市达标名校2022年中考数学模拟预测试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为(  )

    A. B.1 C. D.
    2.如图所示几何体的主视图是( )

    A. B. C. D.
    3.两个一次函数,,它们在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    4.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )
    A.0.13×105 B.1.3×104 C.1.3×105 D.13×103
    5.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:
    ①这栋居民楼共有居民140人
    ②每周使用手机支付次数为28~35次的人数最多
    ③有的人每周使用手机支付的次数在35~42次
    ④每周使用手机支付不超过21次的有15人
    其中正确的是( )

    A.①② B.②③ C.③④ D.④
    6.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )
    A. B. C. D.
    7.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    8.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    9.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是(  )

    A. B. C. D.
    10.已知一个正n边形的每个内角为120°,则这个多边形的对角线有(  )
    A.5条 B.6条 C.8条 D.9条
    11.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是(  )
    A.5 B.4 C.3 D.2
    12.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为(  )
    A.5cm B.5cm或3cm C.7cm或3cm D.7cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.

    14.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.

    15.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.

    16.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________

    17.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是_________.

    18.如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
    20
    21
    19
    16
    27
    18
    31
    29
    21
    22
    25
    20
    19
    22
    35
    33
    19
    17
    18
    29
    18
    35
    22
    15
    18
    18
    31
    31
    19
    22
    整理上面数据,得到条形统计图:

    样本数据的平均数、众数、中位数如下表所示:
    统计量
    平均数
    众数
    中位数
    数值
    23
    m
    21
    根据以上信息,解答下列问题:上表中众数m的值为   ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
    20.(6分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.
    (1)若M为AC的中点,求CF的长;
    (2)随着点M在边AC上取不同的位置,
    ①△PFM的形状是否发生变化?请说明理由;
    ②求△PFM的周长的取值范围.

    21.(6分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).

    22.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.
    23.(8分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
    求证:AB=DE

    24.(10分)先化简,再求值:,其中x=.
    25.(10分)如图所示,点P位于等边的内部,且∠ACP=∠CBP.
    (1)∠BPC的度数为________°;
    (2)延长BP至点D,使得PD=PC,连接AD,CD.
    ①依题意,补全图形;
    ②证明:AD+CD=BD;
    (3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.

    26.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
    (1)求k,a,b的值;
    (2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
    (3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.

    27.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△ABC; 请画出△ABC关于原点对称的△ABC; 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.
    【详解】
    ∠ACB=90°,∠A=30°,
    BC=AB.
    BC=2,
    AB=2BC=22=4,
    D是AB的中点,
    CD=AB= 4=2.
    E,F分别为AC,AD的中点,
    EF是△ACD的中位线.
    EF=CD= 2=1.
    故答案选B.
    【点睛】
    本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.
    2、C
    【解析】
    从正面看几何体,确定出主视图即可.
    【详解】
    解:几何体的主视图为

    故选C.
    【点睛】
    本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
    3、B
    【解析】
    根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.
    【详解】
    解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
    所以,a、b异号,
    所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
    B选项符合,
    D选项,a、b都经过第二、四象限,
    所以,两直线都与y轴负半轴相交,不符合.
    故选:B.
    【点睛】
    本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
    4、B
    【解析】
    试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将13000用科学记数法表示为:1.3×1.
    故选B.
    考点:科学记数法—表示较大的数
    5、B
    【解析】
    根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.
    【详解】
    解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;
    ②每周使用手机支付次数为28~35次的人数最多,此结论正确;
    ③每周使用手机支付的次数在35~42次所占比例为,此结论正确;
    ④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;
    故选:B.
    【点睛】
    此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据
    6、D
    【解析】
    根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
    【详解】
    解:∵ab<0,
    ∴分两种情况:
    (1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
    (2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
    故选D
    【点睛】
    本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
    7、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    8、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    9、A
    【解析】
    由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.
    【详解】
    解:几何体从左到右的最高层数依次为1,2,3,
    所以主视图从左到右的层数应该为1,2,3,
    故选A.
    【点睛】
    本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.
    10、D
    【解析】
    多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
    【详解】
    解:∵多边形的每一个内角都等于120°,
    ∴每个外角是60度,
    则多边形的边数为360°÷60°=6,
    则该多边形有6个顶点,
    则此多边形从一个顶点出发的对角线共有6﹣3=3条.
    ∴这个多边形的对角线有(6×3)=9条,
    故选:D.
    【点睛】
    本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
    11、D
    【解析】
    由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
    【详解】
    不等式组整理得:,
    由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
    即-2<a≤4,即a=-1,0,1,2,3,4,
    分式方程去分母得:5-y+3y-3=a,即y=,
    由分式方程有整数解,得到a=0,2,共2个,
    故选:D.
    【点睛】
    本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    12、B
    【解析】
    (1)如图1,当点C在点A和点B之间时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB-BN=3cm;
    (2)如图2,当点C在点B的右侧时,
    ∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
    ∴MB=AB=4cm,BN=BC=1cm,
    ∴MN=MB+BN=5cm.
    综上所述,线段MN的长度为5cm或3cm.
    故选B.

    点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.
    【详解】
    ∵点 A(2,2)在双曲线上,
    ∴k=4,
    ∵平移后的线段O'A'与双曲线的交点 D 恰为 O'A'的中点,
    ∴D点纵坐标为:1,
    ∴DE=1,O′E=1,
    ∴D点横坐标为:x==4,
    ∴OO′=1,
    故答案为1.

    【点睛】
    本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.
    14、
    【解析】
    根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
    【详解】
    解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,

    ∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),

    如图2,∵△ABC,△DEF都为正三角形,
    ∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
    ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
    在△AEF和△CFD中,

    ∴△AEF≌△CFD(AAS);
    同理可证:△AEF≌△CFD≌△BDE;
    ∴BE=AF,即AE+AF=AE+BE=a.
    设M是△AEF的内心,过点M作MH⊥AE于H,
    则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
    ∵MA平分∠BAC,
    ∴∠HAM=30°;
    ∴HM=AH•tan30°=(a-b)•=
    故答案为:.
    【点睛】
    本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
    15、(-1,2)
    【解析】
    因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可.
    【详解】
    因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,
    若直线向上平移与抛物线相切,切点即为P点,
    设平移后的直线为y=-x-2+b,
    ∵直线y=-x-2+b与抛物线y=x2+x+2相切,
    ∴x2+x+2=-x-2+b,即x2+2x+4-b=0,
    则△=4-4(4-b)=0,
    ∴b=3,
    ∴平移后的直线为y=-x+1,
    解得x=-1,y=2,
    ∴P点坐标为(-1,2),
    故答案为(-1,2).
    【点睛】
    本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键.
    16、
    【解析】
    作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
    【详解】
    作PD⊥BC,则PD∥AC,
    ∴△PBD~△ABC,
    ∴ .
    ∵AC=3,BC=4,
    ∴AB=,
    ∵AP=2BP,
    ∴BP=,
    ∴,
    ∴点P运动的路径长=.
    故答案为:.

    【点睛】
    本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
    17、136°.
    【解析】
    由圆周角定理得,∠A=∠BOD=44°,
    由圆内接四边形的性质得,∠BCD=180°-∠A=136°
    【点睛】
    本题考查了1.圆周角定理;2. 圆内接四边形的性质.
    18、.
    【解析】
    首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'DAC'a,然后根据S△AB'C'AB'•C'D即可求解.
    【详解】
    ∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.
    ∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.
    ∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.
    如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'•C'Da•aa1.
    故答案为:a1.

    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)18;(2)中位数;(3)100名.
    【解析】
    【分析】(1)根据条形统计图中的数据可以得到m的值;
    (2)根据题意可知应选择中位数比较合适;
    (3)根据统计图中的数据可以计该部门生产能手的人数.
    【详解】(1)由图可得,
    众数m的值为18,
    故答案为:18;
    (2)由题意可得,
    如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
    故答案为:中位数;
    (3)300×=100(名),
    答:该部门生产能手有100名工人.
    【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
    20、(1)CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2+2<(1+)y<1+1.
    【解析】
    (1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;
    (2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;
    ②设FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周长=(1+)y,由2<y<1,可得结论.
    【详解】
    (1)∵M为AC的中点,
    ∴CM=AC=BC=2,
    由折叠的性质可知,FB=FM,
    设CF=x,则FB=FM=1﹣x,
    在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,
    解得,x=,即CF=;
    (2)①△PFM的形状是等腰直角三角形,不会发生变化,
    理由如下:由折叠的性质可知,∠PMF=∠B=15°,
    ∵CD是中垂线,
    ∴∠ACD=∠DCF=15°,
    ∵∠MPC=∠OPM,
    ∴△POM∽△PMC,
    ∴=,
    ∴=,
    ∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,
    ∴∠AEM=∠CMF,
    ∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,
    ∴∠DPE=∠MFC,∠MPC=∠MFC,
    ∵∠PCM=∠OCF=15°,
    ∴△MPC∽△OFC,
    ∴ ,
    ∴,
    ∴,
    ∵∠POF=∠MOC,
    ∴△POF∽△MOC,
    ∴∠PFO=∠MCO=15°,
    ∴△PFM是等腰直角三角形;
    ②∵△PFM是等腰直角三角形,设FM=y,
    由勾股定理可知:PF=PM=y,
    ∴△PFM的周长=(1+)y,
    ∵2<y<1,
    ∴△PFM的周长满足:2+2<(1+)y<1+1.
    【点睛】
    本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
    21、44cm
    【解析】
    解:如图,

    设BM与AD相交于点H,CN与AD相交于点G,
    由题意得,MH=8cm,BH=40cm,则BM=32cm,
    ∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,
    ∴.
    ∵EF∥CD,∴△BEM∽△BAH.
    ∴,即,解得:EM=1.
    ∴EF=EM+NF+BC=2EM+BC=44(cm).
    答:横梁EF应为44cm.
    根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.
    22、.
    【解析】
    试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
    试题解析:解:如图:
    所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.

    点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    23、证明见解析.
    【解析】
    证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
    24、1+
    【解析】
    先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
    【详解】
    解:原式



    当时,
    原式=
    【点睛】
    考查分式的混合运算,掌握运算顺序是解题的关键.
    25、(1)120°;(2)①作图见解析;②证明见解析;(3) .
    【解析】
    【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;
    (2)①根据题意补全图形即可;
    ②证明,根据全等三角形的对应边相等可得,从而可得;
    (3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,,根据 即可求得.
    【详解】(1)∵三角形ABC是等边三角形,
    ∴∠ACB=60°,即∠ACP+∠BCP=60°,
    ∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,
    ∴∠BPC=120°,
    故答案为120;
    (2)①∵如图1所示.

    ②在等边中,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴为等边三角形,
    ∵,

    在和中,

    ∴ ,
    ∴,
    ∴;
    (3)如图2,作于点,延长线于点,

    ∵,
    ∴,
    ∴,
    ∴,
    又由(2)得,,

    .
    【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.
    26、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
    【解析】
    (1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
    (3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
    【详解】
    (1)∵OA=4
    ∴A(﹣4,0)
    ∴﹣16+8a=0
    ∴a=2,
    ∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
    ∴B(﹣1,3),
    将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
    解得,
    直线AB的解析式为y=x+4,
    ∴k=1、a=2、b=4;
    (2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,

    由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
    ∴当x=t时,yP=﹣t2﹣4t,yN=t+4
    PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
    BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
    S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
    化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
    ∴﹣4<t<﹣1
    (3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
    ∴CD∥OA
    ∵B(﹣1,3).
    当y=3时,x=﹣3,
    ∴P(﹣3,3),
    连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,

    可证R在DT上
    ∴PN=ON=3
    ∴∠PON=∠OPN=45°
    ∴∠BPR=∠PON=45°,
    ∵OA=OC,∠AOC=90°
    ∴∠PBR=∠BAO=45°,
    ∴PO⊥AC
    ∵∠BPQ+∠CBO=180,
    ∴∠BPQ=∠BCO+∠BOC
    过点Q作QS⊥PN,垂足是S,
    ∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
    可求BR=,OR=2,
    设Q点的横坐标是m,
    当x=m时y=m+4,
    ∴SQ=m+3,PS=﹣m﹣1
    ∴,解得m=﹣.
    当x=﹣时,y=,
    Q(﹣,).
    【点睛】
    本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
    27、(1)图形见解析;
    (2)图形见解析;
    (3)图形见解析,点P的坐标为:(2,0)
    【解析】
    (1)按题目的要求平移就可以了
    关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
    (3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
    【详解】

    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    (3)△PAB如图所示,点P的坐标为:(2,0)
    【点睛】
    1、图形的平移;2、中心对称;3、轴对称的应用

    相关试卷

    江苏省重点达标名校2022年中考数学模拟预测试卷含解析:

    这是一份江苏省重点达标名校2022年中考数学模拟预测试卷含解析,共18页。试卷主要包含了对于下列调查,估计﹣1的值在,﹣18的倒数是等内容,欢迎下载使用。

    黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析:

    这是一份黄冈达标名校2021-2022学年中考数学模拟预测试卷含解析,共17页。试卷主要包含了的绝对值是等内容,欢迎下载使用。

    2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析:

    这是一份2022届江苏省盐城市射阳县达标名校中考数学模拟预测试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,O为原点,点A的坐标为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map