|试卷下载
搜索
    上传资料 赚现金
    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析
    立即下载
    加入资料篮
    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析01
    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析02
    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省姜堰区溱潼二中2022年中考三模数学试题含解析

    展开
    这是一份江苏省姜堰区溱潼二中2022年中考三模数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列实数中是无理数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    2.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为(  )

    A.19° B.29° C.38° D.52°
    3.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    4.如图,已知,那么下列结论正确的是( )

    A. B. C. D.
    5.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(  )
    A. B. C. D.
    6.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )

    A.6 B.8 C.10 D.12
    7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )

    A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
    C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
    8.下列实数中是无理数的是(  )
    A. B.π C. D.
    9.下列四个图形中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    10.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.
    12.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_____.

    13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.

    14.若代数式x2﹣6x+b可化为(x+a)2﹣5,则a+b的值为____.
    15.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
    16.=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).

    (1)求点B的坐标;
    (2)平移后的抛物线可以表示为  (用含n的式子表示);
    (3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.
    ①请写出a与n的函数关系式.
    ②如图2,连接AC,CD,若∠ACD=90°,求a的值.
    18.(8分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    19.(8分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
    对雾霾了解程度的统计表:
    对雾霾的了解程度

    百分比

    A.非常了解

    5%

    B.比较了解

    m

    C.基本了解

    45%

    D.不了解

    n


    请结合统计图表,回答下列问题.
    (1)本次参与调查的学生共有   人,m=   ,n=   ;
    (2)图2所示的扇形统计图中D部分扇形所对应的圆心角是   度;
    (3)请补全条形统计图;
    (4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
    20.(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.
    21.(8分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若m为非负整数,且该方程的根都是无理数,求m的值.
    22.(10分)解方程
    23.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:

    (I)本次随机抽样调查的学生人数为   ,图①中的m的值为   ;
    (II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
    (III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
    24.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

    (1)九(1)班的学生人数为   ,并把条形统计图补充完整;
    (2)扇形统计图中m=   ,n=   ,表示“足球”的扇形的圆心角是   度;
    (3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    2、C
    【解析】
    由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.
    【详解】
    ∵AO∥BC,
    ∴∠ACB=∠OAC,
    而∠OAC=19°,
    ∴∠ACB=19°,
    ∴∠AOB=2∠ACB=38°.
    故选:C.
    【点睛】
    本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.
    3、D
    【解析】试题分析:俯视图是从上面看到的图形.
    从上面看,左边和中间都是2个正方形,右上角是1个正方形,
    故选D.
    考点:简单组合体的三视图
    4、A
    【解析】
    已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
    【详解】
    ∵AB∥CD∥EF,
    ∴.
    故选A.
    【点睛】
    本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
    5、D
    【解析】
    画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
    【详解】
    画树状图如下:

    一共有20种情况,其中两个球中至少有一个红球的有14种情况,
    因此两个球中至少有一个红球的概率是:.
    故选:D.
    【点睛】
    此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    6、C
    【解析】
    ∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    又∵∠ADE=∠EFC,
    ∴∠B=∠EFC,△ADE∽△EFC,
    ∴BD∥EF,,
    ∴四边形BFED是平行四边形,
    ∴BD=EF,
    ∴,解得:DE=10.
    故选C.
    7、D
    【解析】
    试题解析:A、∵4+10+8+6+2=30(人),
    ∴参加本次植树活动共有30人,结论A正确;
    B、∵10>8>6>4>2,
    ∴每人植树量的众数是4棵,结论B正确;
    C、∵共有30个数,第15、16个数为5,
    ∴每人植树量的中位数是5棵,结论C正确;
    D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
    ∴每人植树量的平均数约是4.73棵,结论D不正确.
    故选D.
    考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
    8、B
    【解析】
    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    【详解】
    A、是分数,属于有理数;
    B、π是无理数;
    C、=3,是整数,属于有理数;
    D、-是分数,属于有理数;
    故选B.
    【点睛】
    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    9、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、是轴对称图形,也是中心对称图形,故此选项正确.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    10、C
    【解析】
    从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x个红球,列出方程=20%, 求得x=1.
    故答案为1.
    点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
    12、1
    【解析】
    设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.
    【详解】
    解:设HG=x.
    ∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,则矩形EFGH的面积=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,则矩形EFGH的面积最大值为1.
    故答案为1.
    【点睛】
    本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
    13、
    【解析】
    已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
    14、1
    【解析】
    根据题意找到等量关系x2﹣6x+b=(x+a)2﹣5,根据系数相等求出a,b,即可解题.
    【详解】
    解:由题可知x2﹣6x+b=(x+a)2﹣5,
    整理得:x2﹣6x+b= x2+2ax+a2-5,
    即-6=2a,b= a2-5,
    解得:a=-3,b=4,
    ∴a+b=1.
    【点睛】
    本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.
    15、1
    【解析】
    根据题意得x1+x2=2,x1x2=﹣1,
    所以x1+x2﹣x1x2=2﹣(﹣1)=1.
    故答案为1.
    16、1
    【解析】
    分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.
    详解:原式=1+2﹣2
    =1.
    故答案为:1.
    点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.

    三、解答题(共8题,共72分)
    17、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.
    【解析】
    1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。
    (2) ①根据两种不同的表示形式得到m和h之间的函数关系即可。
    ②点C作y轴的垂线, 垂足为E, 过点D作DF⊥CE于点F, 证得△ACE~△CDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。
    【详解】
    解:(1)当x=0时候,y=﹣x+2=2,
    ∴A(0,2),
    把A(0,2)代入y=(x﹣1)2+m,得1+m=2
    ∴m=1.
    ∴y=(x﹣1)2+1,
    ∴B(1,1)
    (2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,
    ∵∵D(n,2﹣n),
    ∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.
    故答案是:y=(x﹣n)2+2﹣n.
    (3)①∵C是两个抛物线的交点,
    ∴点C的纵坐标可以表示为:
    (a﹣1)2+1或(a﹣n)2﹣n+2
    由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,
    整理得2an﹣2a=n2﹣n
    ∵n>1
    ∴a==.
    ②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
    ∵∠ACD=90°,
    ∴∠ACE=∠CDF
    又∵∠AEC=∠DFC
    ∴△ACE∽△CDF
    ∴=.
    又∵C(a,a2﹣2a+2),D(2a,2﹣2a),
    ∴AE=a2﹣2a,DF=m2,CE=CF=a
    ∴=
    ∴a2﹣2a=1
    解得:a=±+1
    ∵n>1
    ∴a=>
    ∴a=+1
    【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。
    18、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    19、解:(1)400;15%;35%.
    (2)1.
    (3)∵D等级的人数为:400×35%=140,
    ∴补全条形统计图如图所示:

    (4)列树状图得:

    ∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,
    ∴小明参加的概率为:P(数字之和为奇数);
    小刚参加的概率为:P(数字之和为偶数).
    ∵P(数字之和为奇数)≠P(数字之和为偶数),
    ∴游戏规则不公平.
    【解析】
    (1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:.
    (2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.
    (3)根据D等级的人数为:400×35%=140,据此补全条形统计图.
    (4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.
    20、112.1
    【解析】
    试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;
    (2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.
    试题解析:解:(1)y=30﹣2x(6≤x<11).
    (2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.
    点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    21、(1)m<2;(2)m=1.
    【解析】
    (1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
    (2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.
    【详解】
    (1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.
    ∵方程有两个不相等的实数根,
    ∴△>3.
    即﹣8m+2>3.
    解得 m<2;
    (2)∵m<2,且 m 为非负整数,
    ∴m=3 或 m=1,
    当 m=3 时,原方程为 x2-2x-3=3,
    解得 x1=3,x2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x2﹣2=3,
    解得 x1=,x2=﹣ ,
    综上所述,m=1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.
    22、x=-1.
    【解析】
    解:方程两边同乘x-2,得2x=x-2+1
    解这个方程,得x= -1
    检验:x= -1时,x-2≠0
    ∴原方程的解是x= -1
    首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解
    23、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
    【解析】
    (I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
    (II)根据众数、中位数和平均数的定义计算可得;
    (III)用总人数乘以样本中5天、6天的百分比之和可得.
    【详解】
    解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
    故答案为150、14;
    (II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
    平均数为=3.5天;
    (III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
    【点睛】
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
    24、(1)4,补全统计图见详解.(2)10;20;72.(3)见详解.
    【解析】
    (1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;
    (2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;
    (3)画出树状图,然后根据概率公式列式计算即可得解.
    【详解】
    解: (1)九(1)班的学生人数为:12÷30%=40(人),
    喜欢足球的人数为:40−4−12−16=40−32=8(人),
    补全统计图如图所示;

    (2)∵×100%=10%,
    ×100%=20%,
    ∴m=10,n=20,
    表示“足球”的扇形的圆心角是20%×360°=72°;
    故答案为(1)40;(2)10;20;72;
    (3)根据题意画出树状图如下:

    一共有12种情况,恰好是1男1女的情况有6种,
    ∴P(恰好是1男1女)==.

    相关试卷

    2023年江苏省泰州市姜堰区中考数学二模试卷(含解析): 这是一份2023年江苏省泰州市姜堰区中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年江苏省泰州市姜堰区溱潼二中达标名校中考数学对点突破模拟试卷含解析: 这是一份2022年江苏省泰州市姜堰区溱潼二中达标名校中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了下列方程有实数根的是,某市2017年国内生产总值等内容,欢迎下载使用。

    2022届江苏省姜堰区溱潼二中中考数学五模试卷含解析: 这是一份2022届江苏省姜堰区溱潼二中中考数学五模试卷含解析,共18页。试卷主要包含了下列计算结果为a6的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map