终身会员
搜索
    上传资料 赚现金
    高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)
    立即下载
    加入资料篮
    高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)01
    高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)02
    高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)03
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)

    展开
    这是一份高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解),共9页。

    6.1 数列的概念与简单表示法



    1.数列的概念
    (1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做________),排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成________________,其中an是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{an}.
    (2)通项公式:如果数列{an}的________与序号________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
    (3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取值时所对应的一列________.
    (4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项______________与它的前一项______________ (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
    (5)数列的表示方法有________、________、________、________.
    2.数列的分类
    (1)数列按项数是有限还是无限来分,分为________、________.
    (2)按项的增减规律分为________、________、________和________.递增数列⇔an+1________an;递减数列⇔an+1________an;常数列⇔ an+1________an.递增数列与递减数列统称为.
    3.数列前n项和Sn与an的关系
    已知Sn,则an=
    4.常见数列的通项
    (1)1,2,3,4,…的一个通项公式为an=____________.
    (2)2,4,6,8,…的一个通项公式为an=____________.
    (3)3,5,7,9,…的一个通项公式为an=____________.
    (4)2,4,8,16,…的一个通项公式为an=____________.
    (5)-1,1,-1,1,…的一个通项公式为an=________________________________________.
    (6)1,0,1,0,…的一个通项公式为an=________________________________________.
    (7)a,b,a,b,…的一个通项公式为an=________________________________________.
    (8)9,99,999,…的一个通项公式为an=________________________________________.
    注:据此,很易获得数列1,11,111,…;2,22,222,…;…;8,88,888,…的通项公式分别为(10n-1),(10n-1),…,(10n-1).

    自查自纠:
    1.(1)项 首项 a1,a2,a3,…,an,…
    (2)第n项 n (3)函数值 (4)an an-1
    (5)通项公式法(解析式法) 列表法 图象法 递推公式法
    2.(1)有穷数列 无穷数列 (2)递增数列 递减数列
    摆动数列 常数列 > < = 单调数列
    3.S1 Sn-Sn-1
    4.(1)n (2)2n (3)2n+1 (4)2n (5)(-1)n
    (6) (7)
    (8)10n-1


                          
    数列0,-,,-,…的一个通项公式是an= (  )
    A.(-1)n+1· B.(-1)n·
    C.(-1)n-1· D.(-1)n·
    解:奇数项符号为正,偶数项符号为负,故用 (-1)n-1或(-1)n+1调节,变为,观察发现各项分子是立方数减1,分母是平方数加1,故得 an=(-1)n+1·.故选A.
    ()若数列{an}的前n项和为Sn,且Sn=2n2-1,则a1+a3= (  )
    A.10 B.11 C.17 D.18
    解:a1=S1=2-1=1,a3=S3-S2=2×32-2×22=10,所以a1+a3=11.故选B.
    在数列{an}中,a1=1,an=1+ (n≥2),则a5= (  )
    A. B. C. D.
    解:a2=1+=2,a3=1+=,a4=1+ =3,a5=1+=.故选D.
    已知Sn是数列{an}的前n项和,且 log3(Sn+1)=n+1,则数列{an}的通项公式为an=________.
    解:由log3(Sn+1)=n+1,得Sn=3n+1-1,当n=1时,a1=S1=8;当n≥2时, an=Sn-Sn-1=2·3n,
    所以数列{an}的通项公式为an=
    故填
    已知Sn为数列{an}的前n项和,若a1=,且an+1=(n∈N*),则6S100=________.
    解:由数列的递推公式可得:
    a2==,a3==3,a4==-2,a5===a1,知数列{an}是周期为4的周期数列,则6S100=6×25×=425.故填425.


    类型一 数列的通项公式
                        
     根据下面各数列前几项的值,写出数列的一个通项公式.
    (1)-1,7,-13,19,…
    (2),,,,,…
    (3),2,,8,,…
    (4)5,55,555,5 555,…
    (5)-1,,-,,-,,…
    解:(1)偶数项为正,奇数项为负,故通项公式正负性可用(-1)n调节,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5).
    (2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故数列的一个通项公式为an=.
    (3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即,,,,,…,故数列的一个通项公式为an=.
    (4)将原数列改写为×9,×99,×999,…,易知数列9,99,999,…的通项为10n-1,故数列的一个通项公式为an=(10n-1).
    (5) 奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以an=(-1)n·.
    也可写为an=

    点  拨:
    给出数列的前几项求通项时,主要从以下几个方面来考虑:
    ①熟悉一些常见数列的通项公式,如{n},{2n},{(-1)n},{2n},{n2},{2n-1}等.
    ②分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系.
    ③若第n项和第n+1项正负交错,那么用符号 (-1)n或(-1)n+1来适配.
    ④对于较复杂数列的通项公式,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.
    ⑤注意通项公式的形式不一定是惟一的,如数列1,0,1,0,…的通项公式可写成an=或an=,甚至分段形式an=等.

     写出下列数列的一个通项公式.
    (1)-1,,-,,-,…
    (2)3,5,9,17,33,…
    (3)0.8,0.88,0.888,…
    (4),-1,,-,,…
    (5)1,0,,0,,0,,0,…
    解:(1)an=(-1)n·;
    (2)an=2n+1;
    (3)将数列变形为(1-0.1),(1-0.01), (1-0.001),…,所以an=.
    (4)由于-1=-,故分母为3,5,7,9,11,…,即{2n+1},分子为2,5,10,17,26,…,即 {n2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n+1},故an=(-1)n+1·.
    (5)把数列改写成,,,,,,,,…,分母依次为1,2,3,…,而分子1,0,1,0,…周期性出现,因此数列的通项可表示为an=.
    类型二 由前n项和公式求通项公式
     (1)若数列{an}的前n项和Sn=n2-10n,则此数列的通项公式为an=________.
    解:当n=1时,a1=S1=1-10=-9;
    当n≥2时,
    an=Sn-Sn-1=n2-10n-[(n-1)2-10(n-1)]=2n-11.
    当n=1时,2×1-11=-9=a1.所以an=2n-11.
    故填2n-11.
    (2)若数列{an}的前n项和Sn=2n+1,则此数列的通项公式为an=.
    解:当n=1时,a1=S1=21+1=3;
    当n≥2时,
    an=Sn-Sn-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.
    综上有 an=故填
    (3)已知数列{an}的首项a1=2,其前n项和为Sn.若Sn+1=2Sn+1,则an=________.
    解:由Sn+1=2Sn+1,有Sn=2Sn-1+1(n≥2),
    两式相减得an+1=2an,
    又S2=a1+a2=2a1+1,a2=3,
    所以数列{an}从第二项开始成等比数列,
    所以an=故填

    点 拨:
    任何一个数列,它的前n项和Sn与通项an都存在关系:an= 若a1适合Sn-Sn-1,则应把它们统一起来,否则就用分段函数表示.另外一种快速判断技巧是利用S0是否为0来判断:若S0=0,则a1适合Sn-Sn-1,否则不符合,这在解小题时比较有用.
      
     (1)已知下列数列{an}的前n项和Sn,分别求它们的通项公式an.
    (Ⅰ)Sn=2n2-3n;
    (Ⅱ)Sn=3n+b.
    解:(Ⅰ)a1=S1=2-3=-1,当n≥2时,an=Sn-Sn-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,
    a1也适合此等式,所以an=4n-5.
    (Ⅱ)a1=S1=3+b,
    当n≥2时,an=Sn-Sn-1
    =(3n+b)-(3n-1+b)=2·3n-1.
    当b=-1时,a1适合此等式.
    当b≠-1时,a1不适合此等式.
    所以当b=-1时,an=2·3n-1;
    当b≠-1时,an=
    (2)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则an=________.
    解:因为an+1=SnSn+1,所以an+1=Sn+1-Sn=SnSn+1,所以=-=1,即-=-1,又a1=-1,即==-1,所以数列是首项和公差均为-1的等差数列, 所以=-1-1×(n-1)=-n,所以Sn=-.an=Sn-Sn-1=(n≥2).故填

    类型三 由递推公式求通项公式
     写出下面各数列{an}的通项公式.
    (1)a1=2,an+1=an+n+1;
    (2)a1=1,an+1=an;
    (3)a1=1,an+1=3an+2;
    (4)a1=2,an+1=.
    解:(1)由题意得,当n≥2时,an-an-1=n,
    所以an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
    =2+(2+3+…+n)=2+
    =+1.
    又a1=2=+1,适合上式,
    因此an=+1.
    (2)由题设知an≠0,则=,
    ×××…×=×××…×,
    =,
    又a1=1,则an+1=,故 an=.
    (3)方法一:(累乘法)
    an+1=3an+2,得an+1+1=3(an+1),即=3,
    所以=3,=3,=3,…,=3.
    将这些等式两边分别相乘得=3n.
    因为a1=1,所以=3n,
    即an+1=2×3n-1(n≥1),
    所以an=2×3n-1-1(n≥2),
    又a1=1也适合上式,
    故数列{an}的一个通项公式为an=2×3n-1-1.
    方法二:(迭代法)
    an+1=3an+2,
    即an+1+1=3(an+1)=32(an-1+1)=33(an-2+1)
    =…=3n(a1+1)=2×3n(n≥1),
    所以an=2×3n-1-1(n≥2),
    又a1=1也满足上式,
    故数列{an}的一个通项公式为an=2×3n-1-1.
    (4)an+1=,易知an≠0,两边取倒数得=3+,即-=3,=,所以数列是以为首项,3为公差的等差数列,所以=3n-,所以an=.

    点  拨:
    已知数列的递推关系求数列的通项时,通常用累加、累乘、构造法求解.当出现an=an-1+m时,构造等差数列;当出现an=xan-1+y时,构造等比数列;当出现an=an-1+f(n)时,一般用累加法求通项;当出现=f(n)时,一般用累乘法求通项.另外,有些递推关系可通过两边取倒数后转化为等差、等比数列.注意检验n=1时,是否适合所求.
      
     写出下面各递推公式表示的数列{an}的通项公式.
    (1)a1=2,an+1=an+;
    (2)a1=1,an+1=2nan;
    (3)a1=1,an+1=2an+1;
    (4)a1=,an+1=.
    解:(1)因为当n≥2时,an-an-1==-,
    所以当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=++…+(-)++2=3-.
    当n=1时,适合.故an=3-.
    (2)因为=2n,所以=21,=22,…,=2n-1,
    将这n-1个等式叠乘,
    得=21+2+…+(n-1)=2,所以an=2.
    当n=1时,适合.故an=2.
    (3)由题意知an+1+1=2(an+1),所以数列{an+1}是以2为首项,2为公比的等比数列,所以an+1=2n,所以an=2n-1.
    (4)由an+1=知an≠0,两边取倒数得-=,所以是以为首项,为公差的等差数列,所以=+(n-1)×=,an=.
    类型四 数列通项的性质
     已知数列{an}中,an=1+ (n∈N*,a∈R,且a≠0).
    (1)若a=-7,求数列{an}中的最大项和最小项的值;
    (2)若对任意的n∈N*,都有an≤a6成立,求a的取值范围.
    解:(1)因为a=-7,所以an=1+.
    结合函数f(x)=1+的单调性,
    可知1>a1>a2>a3>a4,a5>a6>a7>…>an>1(n∈N*).
    所以数列{an}中的最大项为a5=2,最小项为a4=0.
    (2)an=1+=1+.
    因为对任意的n∈N*,都有an≤a6成立,结合函数f(x)=1+的单调性,知5<<6,所以-10 故a的取值范围为(-10,-8).

    点 拨:
    数列是特殊的函数,故研究其前n项和或通项的性质时,可充分借助函数,要具备能将公式转化为我们熟知的函数的能力.
      
     设函数f(x)= an=f(n),若数列{an}是递减数列,则实数a的取值范围是 (  )
    A.(-∞,2) B.
    C. D.
    解:由题意,知f(x)=(a-2)x在(2,+∞)上是减函数,且a1>a2,所以 即 解得a<.故选C.


    1.已知数列的前几项求数列的通项公式
    (1)如果符号正负相间,则符号可用(-1)n或 (-1)n+1来调节.
    (2)分式形式的数列,分子和分母分别找通项,并充分借助分子和分母的关系来解决.
    (3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.
    此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.
    2.an=注意an=Sn-Sn-1的条件是n≥2,还须验证a1是否符合an(n≥2),是则合并,否则写成分段形式.
    3.已知递推关系求通项
    掌握先由a1和递推关系求出前几项,再归纳、猜想an的方法,以及“累加法”“累乘法”等.
    (1)已知a1且an-an-1=f(n),可以用“累加法”得:
    an=a1+f(2)+f(3)+…+f(n-1)+f(n).
    (2)已知a1且=f(n),可以用“累乘法”得:
    an=a1·f(2)·f(3)·…·f(n-1)·f(n).
    注:以上两式均要求{f(n)}易求和或积.
    4.数列的简单性质
    (1)单调性:若an+1>an,则{an}为递增数列;若an+1<an,则{an}为递减数列.
    (2)周期性:若an+k=an(n∈N*,k为非零正整数),则{an}为周期数列,k为{an}的一个周期.
    (3)最大值与最小值:若 则an最大;若 则an最小.



    1.数列0,,,,…的一个通项公式为(  )
    A.an=(n∈N*)
    B.an=(n∈N*)
    C.an=(n∈N*)
    D.an=(n∈N*)
    解法一:特例淘汰法.
    令n=1,淘汰D选项,令n=2淘汰A,B选项.
    解法二:数列变形为,,,,…分子、分母都是等差数列,分子2(n-1)分母2n-1.故选C.
    2.已知数列{an}的前n项和Sn=n2-2n,则a2+a18= (  )
    A.36 B.35 C.34 D.33
    解:当n≥2时,an=Sn-Sn-1=2n-3;当n=1时,a1=S1=-1,所以an=2n-3(n∈N*),所以a2+a18=34.故选C.
    3.若数列{an}满足a1=2, a+a=2an+1·an,则数列{an}的前32项和为 (  )
    A.16 B.32 C.64 D.128
    解:根据题意,由a+a=2an+1·an(n∈N*),得(an+1-an)2=0,即an+1=an.由a1=2,得an=2,则数列{an}前32项和S32=2×32=64.故选C.
    4.()设Sn为数列{an}的前n项和,且Sn=(an-1)(n∈N*),则an= (   )
    A.3(3n-2n) B.3n+2 C.3n D.3·2n-1
    解:当n=1时,a1=3;
    当n≥2时,an=Sn-Sn-1=(an-1)-(an-1-1),
    得到an=3an-1,所以an=3n.故选C.
    5.若数列{an}中,a1=3,a2=6,且an+2= an+1-an,则a2 020= (  )
    A.-3 B.3 C.-6 D.6
    解:因为an+2=an+1-an,所以an+3=an+2- an+1,两式相加可得an+3=-an,于是an+6=an,{an}是以6为周期的周期数列,a3=a2-a1=3,a4= a3-a2=-3,a5=a4-a3=-6,a6=a5-a4=-3,故a2 020=a4=-3.故选A.
    6.已知{an}满足an+1=an+2n,且a1=33,则的最小值为 (  )
    A.21 B.10 C. D.
    解:由已知条件可知,当n≥2时,
    an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
    =33+2+4+…+2(n-1)=n2-n+33.
    又n=1时,a1=33满足此式.
    所以=n+-1.
    令f(n)==n+-1,则f(n)在[1,5]上为减函数,
    在[6,+∞)上为增函数,又f(5)=,f(6)=,
    则f(5)>f(6),故f(n)=的最小值为.故选D.
    7.在数列-1,0,,,…,,…中,0.08是它的第________项.
    解:令=0.08,得2n2-25n+50=0,即(2n-5)(n-10)=0.解得n=10或n=(舍去).即0.08是该数列的第10项.故填10.
    8.已知函数f(n)=且an=f(n)+f(n+1),则a1+a2+a3+…+a2 020=________.
    解:当n为奇数时,an+an+1=n2-(n+1)2-(n+1)2+(n+2)2=2,为定值,所以a1+a2+a3+…+a2 020=2×=2 020.故填2 020.
    9.根据数列{an} 的前几项,分别写出下列数列的一个通项公式.
    (1)7,77,777,7 777,…
    (2)4,-,2,-,,…
    (3)3,5,3,5,…
    (4)1,2,2,4,3,8,4,16,…
    解:(1)将各项改写如下
    (10-1),(102-1),(103-1),(104-1),…
    易知an=(10n-1).
    (2)将各项绝对值改写如下
    ,,,,,…
    综合考查分子、分母,以及各项符号可知an=(-1)n-1.
    (3)an= 或an==4+(-1)n.
    (4)观察数列{an}可知,奇数项成等差数列,偶数项成等比数列,所以an=
    10.已知数列{an}的通项公式是an=n2+kn+4.
    (1)若k=-5,则数列中有多少项是负数?n为何值时,an有最小值?并求出最小值;
    (2)对于n∈N*,都有an+1>an,求实数k的取值范围.
    解:(1)由n2-5n+4<0,解得1 因为n∈N*,所以n=2,3,
    所以数列中有两项是负数,即为a2,a3.
    因为an=n2-5n+4=-,
    由二次函数性质,得当n=2或n=3时,an有最小值,其最小值为a2=a3=-2.
    (2)由对于n∈N*,都有an+1>an知该数列是一个递增数列,又因为通项公式an=n2+kn+4,可以看作是关于n的二次函数,考虑到n∈N*,所以-<,即得k>-3.
    所以实数k的取值范围为(-3,+∞).
    11.Sn为数列{an}的前n项和,已知an>0,a+2an=4Sn+3.
    (1)求{an}的通项公式;
    (2)设bn=,求数列{bn}的前n项和.
    解:(1)由a+2an=4Sn+3,可知a+2an+1=4Sn+1+3.
    可得a-a+2(an+1-an)=4an+1,即
    2(an+1+an)=a-a=(an+1+an)(an+1-an).
    由于an>0,可得an+1-an=2.
    又a+2a1=4a1+3,解得a1=-1(舍去)或a1=3.
    所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1.
    (2)由an=2n+1可知
    bn==
    =.
    设数列{bn}的前n项和为Tn,则
    Tn=b1+b2+…+bn

    =.
    设Sn为数列{an}的前n项和,2an- an-1=3·2n-1(n≥2),且3a1=2a2.
    (1)证明:数列为等比数列;
    (2)记Tn为数列的前n项和,若∀n∈N*,Tn 解:(1)证明:由2an-an-1=3·2n-1(n≥2),得 =·+,所以-1=(n≥2).
    由2an-an-1=3·2n-1(n≥2),且3a1=2a2,可得2a2-a1=6,即2a1=6,得a1=3.
    所以数列是以为首项,为公比的等比数列.
    (2)由(1)知-1=·=,所以an=2n(21-2n+1)=21-n+2n.
    所以Sn=+(2+22+23+…+2n)=+=2·2n-21-n,
    ==,
    所以Tn==<,
    因为对∀n∈N*,Tn






    相关学案

    高考数学(理数)一轮复习学案10.9《正态分布》(含详解): 这是一份高考数学(理数)一轮复习学案10.9《正态分布》(含详解),共10页。

    高考数学(理数)一轮复习学案9.7《双曲线》(含详解): 这是一份高考数学(理数)一轮复习学案9.7《双曲线》(含详解),共9页。

    高考数学(理数)一轮复习学案9.6《椭 圆》(含详解): 这是一份高考数学(理数)一轮复习学案9.6《椭 圆》(含详解),共11页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map