开学活动
搜索
    上传资料 赚现金

    人教B版高考数学一轮总复习第8章第7节抛物线学案

    人教B版高考数学一轮总复习第8章第7节抛物线学案第1页
    人教B版高考数学一轮总复习第8章第7节抛物线学案第2页
    人教B版高考数学一轮总复习第8章第7节抛物线学案第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版高考数学一轮总复习第8章第7节抛物线学案

    展开

    这是一份人教B版高考数学一轮总复习第8章第7节抛物线学案,共13页。
    7节 抛物线一、教材概念·结论·性质重现1抛物线的概念(1)定义:一般地,设F是平面内的一个定点,l是不过定点F的一条定直线,则平面上到F的距离与到l的距离相等的点的轨迹称为抛物线.(2)相关概念:定点F称为抛物线的焦点,定直线l称为抛物线的准线.2抛物线的标准方程与几何性质标准方程y22px(p>0)y2=-2px(p>0)x22py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点坐标O(0,0)对称轴xy焦点坐标FFFF离心率e1准线方程x=-xy=-y范围x0yRx0yRy0xRy0xR开口方向向右向左向上向下(1)抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离.(2)求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确选择抛物线的标准方程.(3)y2mx(m0)x2my(m0)求焦点坐标时,只需将xy的系数除以4,再确定焦点位置即可.(4)抛物线y22px(p>0)上一点P(x0y0)到焦点F的距离|PF|x0,也称为抛物线的焦半径.3焦点弦设过抛物线焦点的弦的端点为A(x1y1)B(x2y2),则y22px(p0)|AB|x1x2py2=-2px(p0)|AB|p(x1x2)x22py(p0)|AB|y1y2px2=-2py(p0)|AB|p(y1y2)二、基本技能·思想·活动体验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( × )(2)方程yax2(a0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.( × )(3)抛物线方程中,字母p的几何意义是焦点到抛物线顶点的距离.( × )(4)已知AB为抛物线y22px(p>0)的过焦点F的弦.若A(x1y1)B(x2y2),则x1x2y1y2=-p2,弦长|AB|x1x2p.( )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.( )                   2.若抛物线y22px(p0)的焦点是椭圆1的一个焦点,则p(  )A2 B3  C4 D8D 解析:抛物线y22px(p0)的焦点坐标为,椭圆1的焦点坐标为0),故,解得p8(p0舍去).故选D.3.设抛物线y28x上一点Py轴的距离是4,则点P到该抛物线焦点的距离是(  )A4 B6  C8 D12B 解析:如图所示,抛物线的准线l的方程为x=-2F是抛物线的焦点.过点PPAy轴,垂足是A,延长PA交直线l于点B,则|AB|2.由于点Py轴的距离为4,则点P到准线l的距离|PB|426,所以点P到焦点的距离|PF||PB|6.故选B.4.顶点在原点,且过点P(2,3)的抛物线的标准方程是____________y2=-xx2y 解析:设抛物线的标准方程为y2kxx2my,代入点P(2,3),解得k=-m,所以y2=-xx2y.5.抛物线y28x上到其焦点F距离为5的点的个数为________2 解析:P(x1y1),则|PF|x125,得x13y1±2.故满足条件的点的个数为2.考点1 抛物线的标准方程——基础性1.过点F(0,3)且与直线y30相切的动圆圆心的轨迹方程为(  )Ay212x By2=-12xCx2=-12y Dx212yD 解析:由题意,得动圆的圆心到直线y=-3的距离和到点F(3,0)的距离相等,所以动圆的圆心是以点F(0,3)为焦点,直线y=-3为准线的抛物线,其方程为x212y.2.如图,过抛物线y22px(p>0)的焦点F的直线依次交抛物线及准线于点ABC.|BC|2|BF|,且|AF|3,则抛物线的方程为(  )Ay2x By29xCy2x Dy23xD 解析:如图,分别过点AB作准线的垂线,分别交准线于点ED.|BF|a,则|BC|2a|BD|a,故BCD30°.在直角三角形ACE中,因为|AF|3|AC|33a,所以 2|AE||AC|,所以33a6,从而得a1.因为BDFG,所以,解得p,因此抛物线方程为y23x.故选D.3.已知抛物线的顶点在原点,焦点在x轴的正半轴上.若抛物线的准线与双曲线5x2y220的两条渐近线围成的三角形的面积等于4,则抛物线的方程为____________y28x 解析:设抛物线的方程为y22px(p>0),则抛物线的准线方程为x=-,双曲线的渐近线方程为y±x.由围成的三角形面积为4,可得××p4,解得p4.所以抛物线的方程为y28x.抛物线标准方程的求法(1)定义法:根据条件确定动点满足的几何特征,从而求出抛物线的标准方程.(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线的标准方程有四种形式.若焦点在x轴上,设为y2px(p0);若焦点在y轴上,设为x2py(p0)考点2 抛物线的定义及应用——综合性(1)已知F为抛物线Cy24x的焦点,过点F的直线l交抛物线CAB两点.若|AB|8,则线段AB的中点M到直线x10的距离为(  )A2 B4  C8 D16B 解析:如图,抛物线y24x的焦点为F(1,0),准线为x=-1,即x10.AB作准线的垂线,垂足分别为CD则有|AB||AF||BF||AC||BD|8.AB的中点M作准线的垂线,垂足为N,则MN为直角梯形ABDC的中位线,则|MN|(|AC||BD|)4,即点M到准线x=-1的距离为4.(2)(2020·滨州期末)已知抛物线y24x的焦点为F,准线为lp为该抛物线上一点,PAlA为垂足.若直线AF的斜率为-,则PAF的面积为 (  )A2 B4C8 D8B 解析:由题意得,抛物线y24x的焦点 F(1,0),设抛物线y24x的准线与x轴的交点为D,则|DF|2.又直线AF的斜率为 -,所以AFD60°,因此|AF|2|DF|4FAP60°.由抛物线的定义可得 |PA||PF|,所以PAF是边长为4的等边三角形,所以PAF的面积为×4×4×sin 60°4.故选B.将本例(2)中点A的坐标改为(3,4),则|PA||PF|的最小值为________ 解析:因为点A(3,4)在抛物线的外部,所以当PAF共线时,|PA||PF|最小,|PA||PF||AF|.抛物线定义的应用技巧(1)涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径.(2)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.1(2020·全国卷)已知点A为抛物线Cy22px(p>0)上一点,点AC的焦点的距离为12,到y轴的距离为9,则p(  )A2 B3  C6 D9C 解析:设焦点为F,点A的坐标为(x0y0)由抛物线定义得|AF|x0.因为点Ay轴的距离为9,所以x09所以912,所以p6.故选C.2(2020·山西大学附中模拟)已知点Q(20)及抛物线y上一动点P(xy),则y|PQ|的最小值是________2 解析:抛物线y,即x24y,其焦点坐标为点F(0,1),准线方程为y=-1.因为点Q的坐标为(20),所以|FQ|3.过点P作准线的垂线PH,交x轴于点D,如图所示.结合抛物线的定义,有y|PQ||PD||PQ||PH||PQ|1|PF||PQ|1|FQ|1312,即y|PQ|的最小值是2.考点3 抛物线的几何性质——综合性考向1 范围问题M(x0y0)为抛物线Cx28y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是(  )A(0,2)  B[0,2]C(2,+)  D[2,+)C 解析:由抛物线Cx28yp4,所以焦点F(0,2),准线方程y=-2.由抛物线的定义,|MF|y02.因为以F为圆心、|FM|为半径的圆与准线相交,且圆心F(0,2)到准线y=-2的距离为4.所以4y02,从而y02.考向2 弦长问题已知抛物线Cx22py(p>0)和定点M(0,1).设过点M的动直线交抛物线CAB两点,抛物线CAB处的切线交点为N.(1)N在以AB为直径的圆上,求p的值;(2)ABN面积的最小值为4,求抛物线C的方程.解:(1)设直线AB的方程为ykx1A(x1y1)B(x2y2)AB的方程代入抛物线C,得x22pkx2p0.显然方程有两个不等实根,x1x22pkx1x2=-2p.x22py,得y,则AB处的切线斜率乘积为=-=-1,解得p2.(2)设切线AN的方程为yxb,又切点A在抛物线y上,所以y1,所以b=-则切线AN的方程为yANx.同理切线BN的方程为yBNx.又因为NyANyBN上,所以解得N,所以N(pk,-1)|AB||x2x1|N到直线AB的距离dSABN·|ABd2所以24,所以p2故抛物线C的方程为x24y.(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|x1x2p;若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用设而不求”“整体代入等解法. (2020·合肥模拟)已知F为抛物线Cy24x的焦点,过F作两条互相垂直的直线l1l2,直线l1C交于AB两点,直线l2C交于DE两点,则|AB||DE|的最小值为(  )A16 B14  C12 D10A 解析:抛物线Cy24x的焦点为F(10),由题意可知l1l2的斜率存在且不为0.不妨设直线l1的斜率为k,则直线l2的斜率为-l1yk(x1)l2y=-(x1)消去yk2x2(2k24)·xk20.A(x1y1)B(x2y2)所以x1x22.由抛物线的定义可知,|AB|x1x224.同理得|DE|44k2所以|AB||DE|84k28216,当且仅当k2,即k±1时取等号.|AB||DE|的最小值为16.过抛物线x22y的焦点F作直线交抛物线于AB两点.若|AB|,且|AF|<|BF|,则|AF|________.[四字程序]  直线AB与焦点为F的抛物线x22y交于AB两点1.直线过抛物线的焦点要应用抛物线的什么性质?2.如何用点A的坐标表示AF的长?1.应用三角形相似;2.设出直线的方程,联立直线和抛物线,用抛物线的焦半径公式表示线段|AB||AF||BF|转化与化归,数形结合|AF|的长1.当直线过抛物线的焦点时,要想到应用抛物线的定义,即抛物线上任意一点到焦点的距离和准线的距离相等;2.对于焦点在y轴上的抛物线来说,设点A的坐标为(x1y1),则|AF|y1|AF|y1|BF|y2|AB|y1y2p1.把线段的长度问题转化为抛物线的定义问题;2.把线段的长度问题转化为三角形相似问题思路参考:利用抛物线定义及三角形相似关系求解. 解析:如图,过AB分别作准线的垂线.|AF|m|BF|n,则mn(m<n)由抛物线的定义得|AF||AD|m|BF||BC|n|FH|1.BEC中,因为所以,解得|EA||EB||EA|mn|EF||EA|m.因为所以,解得mn联立解得|AF|.思路参考:设直线方程,利用y1y2关系求解. 解析:lABykxA(x1y1)B(x2y2)联立x22kx10x1x2=-1y1y2.|AF|m|BF|n,则mn.由抛物线的定义知y1y2·mn.联立解得|AF|.思路参考:利用弦长公式及焦半径公式求解. 解析:lABykxA(x1y1)B(x2y2)x22kx10所以x1x22kx1x2=-1.所以|AB||x1x2|·2(1k2),得k2解得k±.k因为x1kx2k所以|AF|y1kx11k21k2代入得|AF|.1.本题考查抛物线的定义及焦半径公式的应用,三种解法都是较为基础的解法,需要学生全部掌握.2.基于课程标准,抛物线的定义是最基本的内容,需要熟练掌握,平面几何知识的应用是解析几何中简化运算的重要手段,体现了直观想象的核心素养.3.基于高考数学评价体系,解答本题的思路较为开阔,实现了图形和代数式的相互转化,体现了基础性和综合性的特点.已知过抛物线y22px(p>0)的焦点F,且倾斜角为120°的直线与抛物线在第一、第四象限的交点分别为AB,则的值等于________ 解析:(方法一:特殊值法)p2,则抛物线的方程为y24x,焦点F(1,0)因为直线的倾斜角为120°所以直线方程为y=-(x1)联立消去y可得3x210x30,解得x1x23所以.(方法二:常规法)抛物线的焦点为F因为直线的倾斜角为120°所以直线方程为y=-.联立消去y3x25px0解得x1x2.所以.  

    相关学案

    人教B版高考数学一轮总复习第8章第6节双曲线学案:

    这是一份人教B版高考数学一轮总复习第8章第6节双曲线学案,共14页。

    人教B版高考数学一轮总复习第8章第1节直线方程学案:

    这是一份人教B版高考数学一轮总复习第8章第1节直线方程学案,共12页。

    人教B版高考数学一轮总复习第5章第1节数列基础学案:

    这是一份人教B版高考数学一轮总复习第5章第1节数列基础学案,共17页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map