- 2022秋高中数学章末素养提升6第六章计数原理课件新人教A版选择性必修第三册 课件 0 次下载
- 2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册 课件 0 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.1排列课件新人教A版选择性必修第三册 课件 1 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.2排列数课件新人教A版选择性必修第三册 课件 1 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.3组合课件新人教A版选择性必修第三册 课件 0 次下载
高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理评课课件ppt
展开完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=________种不同的方法.【答案】m+n
【预习自测】思维辨析(对的打“√”,错的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )【答案】(1)× (2)√
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=________种不同的方法.【答案】m×n
在分步乘法计数原理中,每个步骤中完成这个步骤的方法可以相同吗?
提示:在分步乘法计数原理中,每个步骤中完成这一步骤的方法均不相同,若相同,只能算是一种方法.
在所有的两位数中,个位数字大于十位数字的两位数的个数为________.素养点睛:考查逻辑推理素养.36 【解析】方法一 根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个)
题型1 分类加法计数原理的应用
方法二 分析个位数字,可分以下几类:个位是9,则十位可以是1,2,3,…,8中的一个,故共有8个;个位是8,则十位可以是1,2,3,…,7中的一个,故共有7个;同理,个位是7的有6个;……个位是2的有1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).
【例题迁移1】 (变换条件)若本例条件变为个位数字小于十位数字且为偶数,那么这样的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).
【例题迁移2】 (变换条件、改变问法)用1,2,3这3个数字可以写出没有重复数字的整数________个.15 【解析】分三类:第一类为一位整数,有3个;第二类为两位整数,有12,21,23,32,13,31,共6个;第三类为三位整数,有123,132,231,213,321,312,共6个,∴共写出没有重复数字的整数3+6+6=15(个).
利用分类加法计数原理计数时的解题流程
1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14B.13C.12D.10【答案】B 【解析】由已知得ab≤1.若a=-1时,b=-1,0,1,2,有4种可能;若a=0时,b=-1,0,1,2,有4种可能;若a=1时,b=-1,0,1,有3种可能;若a=2时,b=-1,0,有2种可能.∴共有(a,b)的个数为4+4+3+2=13.
从1,2,3,4中选三个数字,组成无重复数字的整数,则分别满足下列条件的数有多少个?(1)三位数;(2)三位数的偶数.素养点睛:考查逻辑推理素养.解:(1)三位数有三个数位, 故可分三个步骤完成:第1步,排个位,从1,2,3,4中选1个数字,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.依据分步乘法计数原理, 共有4×3×2=24(个)满足要求的三位数.
题型2 分步乘法计数原理的应用
(2)分三个步骤完成:第1步,排个位,从2,4中选1个,有2种方法;第2步,排十位,从余下的3个数字中选1个,有3种方法;第3步,排百位,只能从余下的2个数字中选1个,有2种方法.故共有2×3×2=12(个)三位数的偶数.
利用分步乘法计数原理计数时的解题流程
2.乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,求不同的出场安排共有多少种?解:方法一 按出场次序,第一位置队员的安排有3种方法,第二位置队员的安排有7种方法,第三位置队员的安排有2种方法,第四位置队员的安排有6种方法,第五位置队员的安排只有1种方法.由分步乘法计数原理,得不同的出场安排种数为3×7×2×6×1=252.
方法二 按主力与非主力,分两步安排.第一步,安排3名主力队员在第一、三、五位置上,有6种方法,第二步,安排7名非主力队员中的2名在第二、四位置上,有7×6种方法.由分步乘法计数原理,得不同的出场安排种数为6×7×6=252.
现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?素养点睛:考查逻辑推理素养.解:(1)分为三类:从国画中选,有5种不同的选法;从油画中选,有2种不同的选法;从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14(种)不同的选法.
题型3 辨析两个计数原理
(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类是一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类是一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类是一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法.所以共有10+35+14=59(种)不同的选法.
用计数原理解题时的注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.(3)混合问题一般是先分类再分步.
3.在7名学生中,有3名会下象棋但不会下围棋,有2名会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现在从7人中选2人分别参加象棋比赛和围棋比赛,共有多少种不同的选法?解:选参加象棋比赛的学生有两种方法,在只会下象棋的3人中选或在既会下象棋又会下围棋的2人中选;选参加围棋比赛的学生也有两种选法,在只会下围棋的2人中选或在既会下象棋又会下围棋的2人中选.互相搭配,可得四类不同的选法.从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛有3×2=6(种)选法;
从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛有3×2=6(种)选法;从2名只会下围棋的学生中选1名参加围棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛有2×2=4(种)选法;2名既会下象棋又会下围棋的学生分别参加象棋比赛和围棋比赛有2种选法.所以共有6+6+4+2=18(种)选法.所以共有18种不同的选法.
某体育场南侧有4个大门,北侧有3个大门,小李到体育场看比赛,则他进、出门的方案有( )A.12种B.7种C.14种D.49种错解:由题意知,小李进体育场有7种不同方案,出体育场有7种不同的方案,故他进、出体育场共有7+7=14(种)不同的方案.答案:C易错防范:错误的根本原因是没有分清小李完成进、出体育场门的过程是分类还是分步,实际上小李到体育场看比赛,他进、出体育场门的过程分两步:第一步进体育场,第二步出体育场.
易错警示 分不清“分类”还是“分步”致误
正解:完成进、出体育场门这件事,需要分两步,第一步进体育场,第二步出体育场.第一步进门共有4+3=7(种)方法.第二步出门共有4+3=7(种)方法.由分步乘法计数原理知,进、出门的方案有7×7=49(种).答案:D点评:利用两个计数原理解决问题时,应首先弄清是“分类”还是“分步”,其次要做到分类时不重不漏,分步时步骤完整.
1.应用两个原理时,要仔细区分原理的不同,加法原理关键在于分类,不同类之间互相排斥,互相独立;乘法原理关键在于分步,各步之间互相依存,互相联系.2.通过对这两个原理的学习,要进一步体会分类讨论思想及等价转化思想在解题中的应用.
1.从3名女同学和2名男同学中选出一人主持本班一次班会,则不同的选法种数为( )A.6B.5C.3D.2【答案】B
2.现有四件不同款式的上衣与三条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,那么不同的选法种数为( )A.7B.64C.12D.81【答案】C3.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两个袋子里各取一个球,共有______种不同的取法.【答案】48
4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有________个.【答案】36 【解析】第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据分步乘法计数原理,共有6×6=36(种)方法.
数学人教A版 (2019)6.1 分类加法计数原理与分步乘法计数原理课文内容ppt课件: 这是一份数学人教A版 (2019)6.1 分类加法计数原理与分步乘法计数原理课文内容ppt课件,共41页。PPT课件主要包含了类型1类型2类型3等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教案配套课件ppt: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教案配套课件ppt,共55页。PPT课件主要包含了知识点1知识点2,类型1类型2类型3等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀ppt课件: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀ppt课件,共43页。PPT课件主要包含了分类加法计数原理,分步乘法计数原理等内容,欢迎下载使用。