|课件下载
终身会员
搜索
    上传资料 赚现金
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册
    立即下载
    加入资料篮
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册01
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册02
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册03
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册04
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册05
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册06
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册07
    2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册08
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年6.1 分类加法计数原理与分步乘法计数原理授课课件ppt

    展开
    这是一份2021学年6.1 分类加法计数原理与分步乘法计数原理授课课件ppt,共32页。PPT课件主要包含了自学导引,预习自测,课堂互动,题型1组数问题,素养达成等内容,欢迎下载使用。

    两个计数原理的区别与联系
    用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?
    提示:编写一个号码要先确定一个英文字母,后确定一个阿拉伯数字,我们可以用树形图列出所有可能的号码.如图:
    由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54(个)不同的号码.
    用0,1,2,3,4五个数字,(1)可以排成多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?素养点睛:考查逻辑推理素养及数学运算素养.解:(1)三位数字的电话号码,首位可以是0,数字也可以重复,因此每个位置都有5种排法,共有5×5×5=53=125(种).
    (2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.
    【例题迁移】 (改变问法)由本例中的五个数字可组成多少个无重复数字的四位奇数?解:完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).
    组数问题的原则及注意点(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法反面分类求解.(2)要注意数字“0”不能排在两位或两位以上的数的最高位.
    1.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(  )A.24B.18C.12D.6【答案】B 【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种情况),之后十位(2种情况),最后百位(2种情况),共12种;如果是第二种情况偶奇奇:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共有12+6=18(种)情况.故选B.
    高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有(  )A.16种B.18种C.37种D.48种素养点睛:考查逻辑推理素养及数学运算素养.【答案】C 
    题型2 选(抽)取与分配问题
    【解析】方法一(直接法)以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的一个班级去另外三个工厂,其分配方案共有3×3=9(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有3×3×3=27(种).综上所述,不同的分配方案有1+9+27=37(种).方法二(间接法)先计算3个班级自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即4×4×4-3×3×3=37(种)方案.
    解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.
    2.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【答案】解:(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择,由分步乘法计数原理得,总方法数N=5×4×3=60.
    题型3 涂色与种植问题
    (1)将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,则不同的种植方法共有________种.(2)将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?
    素养点睛:考查逻辑推理素养及数学运算素养.
    【答案】(1)42 【解析】分别用a,b,c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有两种方法b或c,不妨设放入b,第三块也有2种方法a或c.1.若第三块田放c:第四、五块田分别有2种方法,共有2×2=4(种)方法.
    2.若第三块田放a:第四块有b或c,共2种方法,①若第四块放c:第五块有2种方法;
    ②若第四块放b:第五块只能种作物c,共1种方法.综上,共有3×2×(2×2+2+1)=42(种)方法.
    (2)解:第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.①当第2个、第3个小方格涂不同颜色时,有4×3=12(种)不同的涂法,第4个小方格有3种不同的涂法,由分步乘法计数原理可知有5×12×3=180(种)不同的涂法.②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色,因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知有5×4×4=80(种)不同的涂法.由分类加法计数原理可得共有180+80=260(种)不同的涂法.
    【例题迁移】 (变换条件)本例(2)中的区域改为如图所示,其他条件均不变,则不同的涂法共有多少种?素养点睛:考查逻辑推理素养及直观想象素养.解:依题意,可分两类情况:①④不同色;①④同色.第一类:①④不同色,则①②③④所涂的颜色各不相同,我们可将这件事情分成4步来完成.第一步涂①,从5种颜色中任选一种,有5种涂法;
    第二步涂②,从余下的4种颜色中任选一种,有4种涂法;第三步涂③与第四步涂④时,分别有3种涂法和2种涂法.于是由分步乘法计数原理得,不同的涂法为5×4×3×2=120(种).第二类:①④同色,则①②③不同色,我们可将涂色工作分成三步来完成.第一步涂①④,有5种涂法;第二步涂②,有4种涂法;第三步涂③,有3种涂法.于是由分步乘法计数原理得,不同的涂法有5×4×3=60(种).综上可知,所求的涂色方法共有120+60=180(种).
    解决涂色(种植)问题的常用方法(1)按区域的不同,以区域为主分步计数,用分步乘法计数原理分析.(2)以颜色为主分类讨论,适用于“区域、点、线段”等问题,用分类加法计数原理分析.(3)将空间问题平面化,转化为平面区域的涂色问题.种植问题按种植的顺序分步进行,用分步乘法计数原理计数或按种植品种恰当选取情况分类,用分类加法计数原理计数.
    3.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,则不同染色方法有________种.【答案】420 
    【解析】按照S→A→B→C→D的顺序进行染色,按照A,C是否同色分类:第一类,A,C同色,则有5×4×3×1×3=180(种)不同的染色方法.第二类,A,C不同色,则有5×4×3×2×2=240(种)不同的染色方法.根据分类加法计数原理,共有180+240=420(种)不同的染色方法.
    有红、黄、蓝旗各3面,每次升1面、2面、3面在某一旗杆上纵向排列,表示不同的信号,顺序不同也表示不同的信号,共可以组成多少种不同的信号?错解:每次升一面旗可组成3种不同的信号;每次升2面旗可组成3×2=6(种)不同的信号;每次升3面旗可组成3×2×1=6(种)不同的信号,根据分类加法计数原理知,共有不同信号3+6+6=15(种).易错防范:每次升起2面或3面旗时,颜色可以相同.正解:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9(种)不同的信号;每次升3面旗可组成3×3×3=27(种)不同的信号.根据分类加法计数原理得,共可组成3+9+27=39(种)不同的信号.
    易错警示 分类计数时不要出现遗漏
    1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答后面将要学习的排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏.4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.
    1.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,要从这三名工人中选两名分别去操作这两种车床,则不同的选派方法有(  )A.6种B.5种C.4种D.3种【答案】C 【解析】不同的选派情况可分为3类:若选甲、乙,有2种方法;若选甲、丙,有1种方法;若选乙、丙,有1种方法.根据分类加法计数原理知,不同的选派方法有2+1+1=4(种).
    2.用0,1,…,9这10个数字,可以组成有重复数字的三位数的个数为(  )A.243B.252C.261D.648【答案】B 【解析】0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),所以有重复数字的三位数有900-648=252(个).
    3.某班有3名学生准备参加校运会的100米、200米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生的参赛的不同方法有(  )A.24种B.48种C.64种D.81种【答案】A 【解析】由于每班每项限报1人,故当前面的学生选了某项之后,后面的学生不能再报,由分步乘法计数原理,共有4×3×2=24(种)不同的参赛方法.
    4.火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有(  )A.510种B.105种C.50种D.500种【答案】A 
    相关课件

    数学人教A版 (2019)6.1 分类加法计数原理与分步乘法计数原理课文内容ppt课件: 这是一份数学人教A版 (2019)6.1 分类加法计数原理与分步乘法计数原理课文内容ppt课件,共41页。PPT课件主要包含了类型1类型2类型3等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教案配套课件ppt: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教案配套课件ppt,共55页。PPT课件主要包含了知识点1知识点2,类型1类型2类型3等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀ppt课件: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优秀ppt课件,共43页。PPT课件主要包含了分类加法计数原理,分步乘法计数原理等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课件新人教A版选择性必修第三册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map