江苏省南京市建邺区2022年中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
2.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A.①②③④ B.①④ C.②③④ D.①②③
3.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
4.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )
A.0.5 B.1 C.3 D.π
5.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )
A.4 B.3 C. D.
6.左下图是一些完全相同的小正方体搭成的几何体的三视图 .这个几何体只能是( )
A. B. C. D.
7.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )
A.x=1 B.x= C.x=﹣1 D.x=﹣
8.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=的图象上的两个点,则一次函数y=kx+b的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第一、三、四象限 D.第二、三、四象限
9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )
A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)
10.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
A.(,0) B.(2,0) C.(,0) D.(3,0)
二、填空题(共7小题,每小题3分,满分21分)
11.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
12.在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标________________.
13.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
14.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.
15.分解因式:x2y﹣xy2=_____.
16.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.
17.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.
三、解答题(共7小题,满分69分)
18.(10分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?
19.(5分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
20.(8分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
21.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:
已知:如图,直线l和直线l外一点A
求作:直线AP,使得AP∥l
作法:如图
①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.
②连接AC,AB,延长BA到点D;
③作∠DAC的平分线AP.
所以直线AP就是所求作的直线
根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)
完成下面的证明
证明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依据)
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依据)
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依据)
22.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
23.(12分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
24.(14分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.
(1)求证:AC是☉O的切线;
(2)连接EF,当∠D= °时,四边形FOBE是菱形.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
2、D
【解析】
∵在▱ABCD中,AO=AC,
∵点E是OA的中点,
∴AE=CE,
∵AD∥BC,
∴△AFE∽△CBE,
∴=,
∵AD=BC,
∴AF=AD,
∴;故①正确;
∵S△AEF=4, =()2=,
∴S△BCE=36;故②正确;
∵ =,
∴=,
∴S△ABE=12,故③正确;
∵BF不平行于CD,
∴△AEF与△ADC只有一个角相等,
∴△AEF与△ACD不一定相似,故④错误,故选D.
3、B
【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
【详解】
①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.
【点睛】
本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
4、C
【解析】
连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
【详解】
连接OC、OD,
∵六边形ABCDEF是正六边形,
∴∠COD=60°,又OC=OD,
∴△COD是等边三角形,
∴OC=CD,
正六边形的周长:圆的直径=6CD:2CD=3,
故选:C.
【点睛】
本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
5、C
【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
【详解】
设I的边长为x
根据题意有
解得或(舍去)
故选:C.
【点睛】
本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
6、A
【解析】
试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.
考点:几何体的三视图
7、D
【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
【详解】
解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
故选D.
【点睛】
本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
8、C
【解析】
把(2,2)代入得k=4,把(b,﹣1﹣n2)代入得,k=b(﹣1﹣n2),即
根据k、b的值确定一次函数y=kx+b的图象经过的象限.
【详解】
解:把(2,2)代入,
得k=4,
把(b,﹣1﹣n2)代入得:
k=b(﹣1﹣n2),即,
∵k=4>0,<0,
∴一次函数y=kx+b的图象经过第一、三、四象限,
故选C.
【点睛】
本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k,b的符号是解题关键.
9、A
【解析】
设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.
【详解】
设反比例函数y=(k为常数,k≠0),
∵反比例函数的图象经过点(-2,3),
∴k=-2×3=-6,
而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,
∴点(2,-3)在反比例函数y=- 的图象上.
故选A.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
10、C
【解析】
过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
【详解】
解:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故选:C.
【点睛】
本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
二、填空题(共7小题,每小题3分,满分21分)
11、5或1.
【解析】
先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
【详解】
∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
∴AB=5,
∵以AD为折痕△ABD折叠得到△AB′D,
∴BD=DB′,AB′=AB=5.
如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.
设BD=DB′=x,则AF=6+x,FB′=8-x.
在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.
解得:x1=5,x5=0(舍去).
∴BD=5.
如图5所示:当∠B′ED=90°时,C与点E重合.
∵AB′=5,AC=6,
∴B′E=5.
设BD=DB′=x,则CD=8-x.
在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.
解得:x=1.
∴BD=1.
综上所述,BD的长为5或1.
12、(写出一个即可)
【解析】
【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可.
【详解】设P(x,y),
根据题意,得
|x|=2,|y|=1,
即x=±2,y=±1,
则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),
故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).
【点睛】本题考查了点的坐标和点到坐标轴的距离之间的关系.熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键.
13、4.8或
【解析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以=,
即=,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以=,
即=,
解得t=.
综上所述,当t=4.8或时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
14、2
【解析】
根据定义即可求出答案.
【详解】
由题意可知:原式=1-i2=1-(-1)=2
故答案为2
【点睛】
本题考查新定义型运算,解题的关键是正确理解新定义.
15、xy(x﹣y)
【解析】
原式=xy(x﹣y).
故答案为xy(x﹣y).
16、-1
【解析】
试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.
17、1
【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.
【详解】
解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.
【点睛】
考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.
三、解答题(共7小题,满分69分)
18、从甲班抽调了35人,从乙班抽调了1人
【解析】
分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.
详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,
由题意得,45﹣x=2[39﹣(x﹣1)], 解得:x=35, 则x﹣1=35﹣1=1.
答:从甲班抽调了35人,从乙班抽调了1人.
点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.
19、证明见解析.
【解析】
利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.
【详解】
∵四边形ABCD是平行四边形,∴点O是BD的中点.
又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.
又∵CF=BC,∴OE=CF.
又∵点F在BC的延长线上,∴OE∥CF,
∴四边形OCFE是平行四边形.
【点睛】
本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.
20、(1)30°;(2)20°;
【解析】
(1)利用圆切线的性质求解;
(2) 连接OQ,利用圆的切线性质及角之间的关系求解。
【详解】
(1)如图①中,连接OQ.
∵EQ是切线,
∴OQ⊥EQ,
∴∠OQE=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠AQB=∠AOB=45°,
∵OB=OQ,
∴∠OBQ=∠OQB=15°,
∴∠AQE=90°﹣15°﹣45°=30°.
(2)如图②中,连接OQ.
∵OB=OQ,
∴∠B=∠OQB=65°,
∴∠BOQ=50°,
∵∠AOB=90°,
∴∠AOQ=40°,
∵OQ=OA,
∴∠OQA=∠OAQ=70°,
∵EQ是切线,
∴∠OQE=90°,
∴∠AQE=90°﹣70°=20°.
【点睛】
此题主要考查圆的切线的性质及圆中集合问题的综合运等.
21、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).
【解析】
(1)根据角平分线的尺规作图即可得;
(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.
【详解】
解:(1)如图所示,直线AP即为所求.
(2)证明:∵AB=AC,
∴∠ABC=∠ACB(等边对等角),
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB(三角形外角性质),
∴∠DAC=2∠ABC,
∵AP平分∠DAC,
∴∠DAC=2∠DAP,
∴∠DAP=∠ABC,
∴AP∥l(同位角相等,两直线平行),
故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).
【点睛】
本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.
22、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
【详解】
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
故答案为(1)(2,-2);(2)(1,0)
【点睛】
此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
23、(1)﹣1;(2)x=﹣1是原方程的根.
【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
(2)直接去分母再解方程得出答案.
【详解】
(1)原式=﹣2﹣1+2×
=﹣﹣1+
=﹣1;
(2)去分母得:3x=x﹣3+1,
解得:x=﹣1,
检验:当x=﹣1时,x﹣3≠0,
故x=﹣1是原方程的根.
【点睛】
此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
24、(1)详见解析;(2)30.
【解析】
(1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;
(2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.
【详解】
(1)证明:∵CD与⊙O相切于点E,
∴OE⊥CD,
∴∠CEO=90°,
又∵OC∥BE,
∴∠COE=∠OEB,∠OBE=∠COA
∵OE=OB,
∴∠OEB=∠OBE,
∴∠COE=∠COA,
又∵OC=OC,OA=OE,
∴△OCA≌△OCE(SAS),
∴∠CAO=∠CEO=90°,
又∵AB为⊙O的直径,
∴AC为⊙O的切线;
(2)∵四边形FOBE是菱形,
∴OF=OB=BF=EF,
∴OE=OB=BE,
∴△OBE为等边三角形,
∴∠BOE=60°,
而OE⊥CD,
∴∠D=30°.
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
2024年江苏省南京市建邺区中考数学一模试卷(含解析): 这是一份2024年江苏省南京市建邺区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南京市建邺区中考数学一模试题+答案: 这是一份2024年江苏省南京市建邺区中考数学一模试题+答案,共12页。
2023年江苏省南京市建邺区中考二模数学试题: 这是一份2023年江苏省南京市建邺区中考二模数学试题,共10页。试卷主要包含了本试卷共6页等内容,欢迎下载使用。