江苏省如皋市常青初级中学2021-2022学年中考二模数学试题含解析
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.函数中,x的取值范围是( )
A.x≠0B.x>﹣2C.x<﹣2D.x≠﹣2
2.甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,……,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,……,每一页写的数均比前一页写的数多1.若甲同学在某一页写的数为49,则乙同学在这一页写的数为( )
A.116B.120C.121D.126
3.一次函数的图像不经过的象限是:( )
A.第一象限B.第二象限C.第三象限D.第四象限
4.实数﹣5.22的绝对值是( )
A.5.22B.﹣5.22C.±5.22D.
5.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
6.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )
A.25°B.30°C.35°D.55°
7.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是( )
A.B.C.D.
8.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4B..5C.6D.8
9.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为( )
A.B.C.D.
10.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30°B.50°C.60°D.70°
二、填空题(共7小题,每小题3分,满分21分)
11.若一元二次方程有两个不相等的实数根,则k的取值范围是 .
12.若y=,则x+y= .
13.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.
14.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.
15.的系数是_____,次数是_____.
16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.
17.已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;;,c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号
三、解答题(共7小题,满分69分)
18.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
19.(5分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
20.(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).
(1)求该抛物线的函数表达式.
(2)求直线AB关于x轴对称的直线的函数表达式.
(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM < PN时,求点P的横坐标的取值范围.
21.(10分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
(1)求证:DF⊥AC;
(2)求tan∠E的值.
22.(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?
23.(12分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.
24.(14分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
(发现)(1)的长度为多少;
(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
要使有意义,
所以x+1≥0且x+1≠0,
解得x>-1.
故选B.
2、C
【解析】
根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数.
【详解】
甲所写的数为 1,3,1,7,…,49,…;乙所写的数为 1,6,11,16,…,
设甲所写的第n个数为49,
根据题意得:49=1+(n﹣1)×2,
整理得:2(n﹣1)=48,即n﹣1=24,
解得:n=21,
则乙所写的第21个数为1+(21﹣1)×1=1+24×1=121,
故选:C.
【点睛】
考查了有理数的混合运算,弄清题中的规律是解本题的关键.
3、C
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
答案为C
考点:一次函数的图像
4、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
5、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
6、C
【解析】
根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
【详解】
解:∵直线m∥n,
∴∠3=∠1=25°,
又∵三角板中,∠ABC=60°,
∴∠2=60°﹣25°=35°,
故选C.
【点睛】
本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
7、D
【解析】
根据一次函数的性质结合题目中的条件解答即可.
【详解】
解:由题可得,水深与注水量之间成正比例关系,
∴随着水的深度变高,需要的注水量也是均匀升高,
∴水瓶的形状是圆柱,
故选:D.
【点睛】
此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.
8、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
9、C
【解析】
在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
在矩形OCED中,由勾股定理得:CE=OD=,
在Rt△ACE中,由勾股定理得:AE=;故选C.
点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
10、C
【解析】
试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
故选C.
考点:圆周角定理
二、填空题(共7小题,每小题3分,满分21分)
11、:k<1.
【解析】
∵一元二次方程有两个不相等的实数根,
∴△==4﹣4k>0,
解得:k<1,
则k的取值范围是:k<1.
故答案为k<1.
12、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
13、AC⊥BD
【解析】
根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
【详解】
∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
即AC⊥BD.
故答案为:AC⊥BD.
【点睛】
此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.
14、1
【解析】
试题解析:如图,
∵菱形ABCD中,BD=8,AB=5,
∴AC⊥BD,OB=BD=4,
∴OA==3,
∴AC=2OA=6,
∴这个菱形的面积为:AC•BD=×6×8=1.
15、 1
【解析】
根据单项式系数及次数的定义进行解答即可.
【详解】
根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
【点睛】
本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
16、.
【解析】
试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求
AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,
在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,
解得:x=,即AE=AF=,
因此可求得=×AF×AB=××3=.
考点:翻折变换(折叠问题)
17、①③
【解析】
试题解析:∵抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),∴,∴bc>0,故①正确;
∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;
∴可以转化为:,得x=b或x=c,故③正确;
∵b,c是关于x的一元二次方程的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误;
故答案为①③.
三、解答题(共7小题,满分69分)
18、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
19、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.
【解析】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;
(2)设购买“最美东营人”文化衫m件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m的正整数解.
【详解】
(1)设“最美东营人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由题意,得
,
解得:
.
答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)设购买“最美东营人”文化衫m件,则购买“最美志愿者”文化衫(90-m)件,
由题意,得,
解得:41<m<1.
∵m是整数,
∴m=42,43,2.
则90-m=48,47,3.
答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;
方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;
方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.
【点睛】
本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.
20、(1)(2)(3)
【解析】
(1)根据待定系数法,可得二次函数的解析式;
(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;
(3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.
【详解】
(1)将A(﹣1,1),B(2,5)代入函数解析式,得:
,解得:,抛物线的解析式为y=x2﹣2x﹣3;
(2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:
,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;
(3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.
∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.
∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.
故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.
【点睛】
本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.
21、(1)证明见解析;(2)tan∠CBG=.
【解析】
(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
【详解】
解:(1)证明:连接OD,CD,
∵BC是⊙O的直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线
∴OD∥AC,
∵DF为⊙O的切线,
∴OD⊥DF,
∴DF⊥AC;
(2)解:如图,连接BG,
∵BC是⊙O的直径,
∴∠BGC=90°,
∵∠EFC=90°=∠BGC,
∴EF∥BG,
∴∠CBG=∠E,
Rt△BDC中,∵BD=3,BC=5,
∴CD=4,
∵S△ABC=,即6×4=5BG,
∴BG=,
由勾股定理得:CG=,
∴tan∠CBG=tan∠E=.
【点睛】
本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
22、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
【详解】
解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
=200x+8600(0≤x≤6).
(2)200x+8600≤9000
解得x≤2
共有3种调运方案
方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
(3)w=200x+8600
k>0,
所以当x=0时,总运费最低.
也就是从B市调运到C市0台,D市6台;
从A市调运到C市10台,D市2台;最低运费是8600元.
【点睛】
本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
23、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或
【解析】
分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;
(2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.
详解:(1)∵直线与双曲线 ()都经过点B(-1,4),
,
,
∴直线的表达式为,双曲线的表达方式为.
(2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),
,
∵,
,
点P在双曲线上,
∴点P的坐标为或.
点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.
24、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.
【解析】
发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;
(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;
探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;
拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.
【详解】
[发现]
(3)∵P(2,0),∴OP=2.
∵OA=3,∴AP=3,∴的长度为.
故答案为;
(2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.
∵∠PQA=90°,∴PQPA,∴AQ=AP×cs30°,∴S重叠部分=S△APQPQ×AQ.
即重叠部分的面积为.
[探究]
①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.
∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;
∴点P的坐标为(3,0);
②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cs∠OPD,∴OP,∴点P的坐标为(,0);
③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;
∴点P的坐标为(,0);
[拓展]
t的取值范围是2<t≤3,2≤t<4,理由:
如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;
当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.
如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;
直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;
∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.
【点睛】
本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
江苏省如皋市常青初级中学2023-2024学年八上数学期末联考模拟试题含答案: 这是一份江苏省如皋市常青初级中学2023-2024学年八上数学期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,点P,能使分式有意义的条件是等内容,欢迎下载使用。
2022-2023学年江苏省如皋市常青初级中学七年级数学第二学期期末调研试题含答案: 这是一份2022-2023学年江苏省如皋市常青初级中学七年级数学第二学期期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下表是某公司员工月收入的资料等内容,欢迎下载使用。
江苏省南通市如皋市白蒲中学2021-2022学年中考数学模试卷含解析: 这是一份江苏省南通市如皋市白蒲中学2021-2022学年中考数学模试卷含解析,共16页。试卷主要包含了-sin60°的倒数为,如图,,则的度数为等内容,欢迎下载使用。