江苏省泗洪县市级名校2022年中考数学考前最后一卷含解析
展开
这是一份江苏省泗洪县市级名校2022年中考数学考前最后一卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是反比例函数(k为常数,k≠0)的图象,则一次函数的图象大致是( )
A.B.C.D.
2.下列计算正确的是( )
A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3
3.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2B.y=(x﹣2)2+7
C.y=(x﹣2)2-5D.y=(x﹣2)2+4
4.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )
A.4B.9C.12D.16
5.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011B.49.95×1010
C.0.4995×1011D.4.995×1010
6.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )
A.35°B.45°C.55°D.25°
7.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4abB.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4xD.4my-2=2(2my-1)
8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90°B.60°C.45°D.30°
9.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是( )
A.M>NB.M=NC.M0,
∴一次函数y=kx−k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,
∴一次函数y=kx−k的图象经过第一、三、四象限;
故选:B.
2、B
【解析】
分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
详解:A、不是同类项,无法计算,故此选项错误;
B、 正确;
C、 故此选项错误;
D、 故此选项错误;
故选:B.
点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
3、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
4、B
【解析】
由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
【详解】
∵ED∥BC,
∴△ABC∽△ADE,
∴ =,
∴ ==,
即AE=9;
∴AE=9.
故答案选B.
【点睛】
本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
5、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、A
【解析】
根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.
【详解】
解:∵BC⊥AE,
∴∠BCE=90°,
∵CD∥AB,∠B=55°,
∴∠BCD=∠B=55°,
∴∠1=90°-55°=35°,
故选:A.
【点睛】
本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
7、D
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
8、C
【解析】
试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
试题解析:连接AC,如图:
根据勾股定理可以得到:AC=BC=,AB=.
∵()1+()1=()1.
∴AC1+BC1=AB1.
∴△ABC是等腰直角三角形.
∴∠ABC=45°.
故选C.
考点:勾股定理.
9、A
【解析】
若比较M,N的大小关系,只需计算M-N的值即可.
【详解】
解:∵M=9x2-4x+3,N=5x2+4x-2,
∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,
∴M>N.
故选A.
【点睛】
本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.
10、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
二、填空题(共7小题,每小题3分,满分21分)
11、120人, 3000人
【解析】
根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
【详解】
调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
若该社区有10000人,估计爱吃鲜肉粽的人数约为:100003000(人).
故答案为120人;3000人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
12、
【解析】
根据,DE∥BC,结合平行线分线段成比例来求.
【详解】
∵,DE∥BC,
∴,
∴ = =.
∵,
∴
∴.
故答案为:.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
13、
【解析】
试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:
根据勾股定理得:,
由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,
∴×5BD=4,解得:BD=.
考点:1.网格型问题;2.勾股定理;3.三角形的面积.
14、1
【解析】
首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【详解】
∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=1,
∴a的最大值为1.
故答案为1.
【点睛】
圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
15、2
【解析】
试题解析:∵xay与3x2yb是同类项,
∴a=2,b=1,
则ab=2.
16、1.
【解析】
试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.
考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.
17、y=﹣x+1
【解析】
根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
【详解】
∵一次函数y随x的增大而减小,
∴k<0,
∵一次函数的解析式,过点(1,0),
∴满足条件的一个函数解析式是y=-x+1,
故答案为y=-x+1.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
三、解答题(共7小题,满分69分)
18、 ;.
【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
【详解】
解:原式==
把代入得:原式=.
【点睛】
本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
19、x≥.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
2(2﹣3x)﹣3(x﹣1)≤6,
4﹣6x﹣3x+3≤6,
﹣6x﹣3x≤6﹣4﹣3,
﹣9x≤﹣1,
x≥.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
20、证明见解析.
【解析】
根据菱形的性质,先证明△ABE≌△ADF,即可得解.
【详解】
在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
∵点E,F分别是BC,CD边的中点,
∴BE=BC,DF=CD,
∴BE=DF.
∴△ABE≌△ADF,
∴AE=AF.
21、见解析
【解析】
证明△FDE∽△FBD即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴BC=CD,且∠BCE=∠DCE,
又∵CE是公共边,
∴△BEC≌△DEC,
∴∠BEC=∠DEC.
∵CE=CD,
∴∠DEC=∠EDC.
∵∠BEC=∠DEC,∠BEC=∠AEF,
∴∠EDC=∠AEF.
∵∠AEF+∠FED=∠EDC+∠ECD,
∴∠FED=∠ECD.
∵四边形ABCD是正方形,
∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,
∴∠ECD=∠ADB.
∴∠FED=∠ADB.
又∵∠BFD是公共角,
∴△FDE∽△FBD,
∴=,即DF2=EF•BF.
【点睛】
本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.
22、 (x﹣y)2;2.
【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
【详解】
原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
=x2﹣4y2+5y2﹣2xy
=x2﹣2xy+y2,
=(x﹣y)2,
当x=2028,y=2时,
原式=(2028﹣2)2=(﹣2)2=2.
【点睛】
本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
23、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
【解析】
(Ⅰ)根据题意计算即可;
(Ⅱ)根据分段函数解答即可;
(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
【详解】
解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
当月用水量为16吨时,应收水费=15×4+1×6=66元;
故答案为16;66;
(Ⅱ)当x≤15时,y=4x;
当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
X=18,
∴居民甲上月用水量为18吨,居民乙用水12吨.
【点睛】
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得
,
解得:6≤a≤8,
因为a是整数,
所以a=6,7,8;
则(10-a)=4,3,2;
三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
月用水量(吨/户)
4
10
16
……
应收水费(元/户)
40
……
相关试卷
这是一份2022年福建三明市市级名校中考数学考前最后一卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列运算结果正确的是,下列实数中,为无理数的是等内容,欢迎下载使用。
这是一份2022届浙江省仙居县市级名校中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2022届云南省红河州市级名校中考数学考前最后一卷含解析,共20页。试卷主要包含了运用图形变化的方法研究下列问题等内容,欢迎下载使用。