|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析01
    江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析02
    江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析

    展开
    这是一份江苏省苏州市胥江实验中学2022年中考数学考前最后一卷含解析,共18页。试卷主要包含了在直角坐标系中,已知点P,计算3的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为(  )
    A.3122×10 8元 B.3.122×10 3元
    C.3122×10 11 元 D.3.122×10 11 元
    2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为(  )
    A. B. C. D.
    3.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )

    A.15m B.25m C.30m D.20m
    4.若分式有意义,则x的取值范围是( )
    A.x>3 B.x<3 C.x≠3 D.x=3
    5.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是(  )

    A.﹣10 B.﹣5 C.5 D.10
    6.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )

    A. B. C. D.
    7.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是(  )
    A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
    B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
    C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
    D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
    8.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
    甲的路线为:A→C→B;
    乙的路线为:A→D→E→F→B,其中E为AB的中点;
    丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
    若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为(  )

    A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
    9.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为(  )

    A.25° B.30° C.35° D.40°
    10.计算(ab2)3的结果是(  )
    A.ab5 B.ab6 C.a3b5 D.a3b6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个) 

    12.将一副三角板如图放置,若,则的大小为______.

    13.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.

    14.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    15.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
    16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.

    (1)判断直线AC与圆O的位置关系,并证明你的结论;
    (2)若AC=8,cos∠BED=,求AD的长.
    18.(8分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
    (1)求证:四边形BCFE是平行四边形;
    (2)当∠ACB=60°时,求证:四边形BCFE是菱形.

    19.(8分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:

    ()若商场预计进货款为元,则这两种台灯各购进多少盏?
    ()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    20.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    21.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
    (1)求抛物线的表达式及点B的坐标;
    (2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
    (3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
    22.(10分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.
    (I)计算△ABC的边AC的长为_____.
    (II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).

    23.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为   ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.
    24.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    可以用排除法求解.
    【详解】
    第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
    【点睛】
    牢记科学记数法的规则是解决这一类题的关键.
    2、A
    【解析】
    设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.
    【详解】
    解:设袋子中黄球有x个,
    根据题意,得:,
    解得:x=3,
    即袋中黄球有3个,
    所以随机摸出一个黄球的概率为,
    故选A.
    【点睛】
    此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.
    3、D
    【解析】
    根据三角形的中位线定理即可得到结果.
    【详解】
    解:由题意得AB=2DE=20cm,
    故选D.
    【点睛】
    本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    4、C
    【解析】
    试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
    考点:分式有意义的条件.
    5、A
    【解析】
    作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
    【详解】
    作AE⊥BC于E,如图,

    ∵四边形ABCD为平行四边形,
    ∴AD∥x轴,
    ∴四边形ADOE为矩形,
    ∴S平行四边形ABCD=S矩形ADOE,
    而S矩形ADOE=|−k|,
    ∴|−k|=1,
    ∵k<0,
    ∴k=−1.
    故选A.
    【点睛】
    本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    6、D
    【解析】
    根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
    【详解】
    ∵二次函数图象开口方向向上,
    ∴a>0,
    ∵对称轴为直线
    ∴b<0,
    二次函数图形与轴有两个交点,则>0,
    ∵当x=1时y=a+b+c<0,
    ∴的图象经过第二四象限,且与y轴的正半轴相交,
    反比例函数图象在第二、四象限,
    只有D选项图象符合.
    故选:D.
    【点睛】
    考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
    7、D
    【解析】
    把点P的横坐标减4,纵坐标减3可得P1的坐标;
    让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
    让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
    【详解】
    ∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
    ∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
    ∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
    故选D.
    【点睛】
    本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).
    8、A
    【解析】
    分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
    详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
    ∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
    图3与图1中,三个三角形相似,所以 ====.
    ∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
    ∴甲=丙.∴甲=乙=丙.
    故选A.

    点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
    9、B
    【解析】
    如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
    【详解】
    如图,连接OA,OB,OC,OE.

    ∵∠EBC+∠EDC=180°,∠EDC=130°,
    ∴∠EBC=50°,
    ∴∠EOC=2∠EBC=100°,
    ∵AB=BC=CE,
    ∴弧AB=弧BC=弧CE,
    ∴∠AOB=∠BOC=∠EOC=100°,
    ∴∠AOE=360°﹣3×100°=60°,
    ∴∠ABE=∠AOE=30°.
    故选:B.
    【点睛】
    本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    10、D
    【解析】
    试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
    试题解析:(ab2)3=a3•(b2)3=a3b1.
    故选D.
    考点:幂的乘方与积的乘方.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、或
    【解析】
    因为,, ,所以 ,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.
    【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.
    12、160°
    【解析】
    试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.
    解:∵∠AOD=20°,∠COD=∠AOB=90°,
    ∴∠COA=∠BOD=90°﹣20°=70°,
    ∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,
    故答案为160°.
    考点:余角和补角.
    13、1
    【解析】
    根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
    【详解】
    ∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
    ∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
    ∴点C的坐标为(6,2),
    ∵点O的对应点C恰好落在反比例函数y=的图象上,
    ∴k=2,
    故答案为1.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
    14、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    15、1
    【解析】
    根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
    【详解】
    △=(﹣8)2﹣4m=0,
    解得m=1,
    故答案为:1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    16、60°
    【解析】
    先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.
    【详解】
    ∵DA⊥CE,
    ∴∠DAE=90°,
    ∵∠1=30°,
    ∴∠BAD=60°,
    又∵AB∥CD,
    ∴∠D=∠BAD=60°,
    故答案为60°.
    【点睛】
    本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.

    三、解答题(共8题,共72分)
    17、(1)AC与⊙O相切,证明参见解析;(2).
    【解析】
    试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
    试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.

    考点:1.切线的判定;2.解直角三角形.
    18、(1)见解析;(2)见解析
    【解析】
    (1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
    (2)根据菱形的判定证明即可.
    【详解】
    (1)证明::∵D.E为AB,AC中点
    ∴DE为△ABC的中位线,DE=BC,
    ∴DE∥BC,
    即EF∥BC,
    ∵EF=BC,
    ∴四边形BCEF为平行四边形.
    (2)∵四边形BCEF为平行四边形,
    ∵∠ACB=60°,
    ∴BC=CE=BE,
    ∴四边形BCFE是菱形.

    【点睛】
    本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、(1)购进型台灯盏,型台灯25盏;
    (2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
    【解析】
    试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
    试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利y元,
    则y=(45﹣30)x+(70﹣50)(100﹣x),
    =15x+2000﹣20x,
    =﹣5x+2000,
    ∵B型台灯的进货数量不超过A型台灯数量的3倍,
    ∴100﹣x≤3x,
    ∴x≥25,
    ∵k=﹣5<0,
    ∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
    答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    考点:1.一元一次方程的应用;2.一次函数的应用.
    20、(1)证明见解析;(2)
    【解析】
    试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
    (2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
    试题解析:(1)连结OB,则OA=OB.如图1,

    ∵OP⊥AB,
    ∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
    在△PAO和△PBO中,
    ∵,
    ∴△PAO≌△PBO(SSS),
    ∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
    ∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
    (2)连结BE.如图2,

    ∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
    ∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
    ∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
    ∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
    ∵AC=BC,OA=OE,即OC为△ABE的中位线.
    ∴OC=BE,OC∥BE,∴BE=2OC=3.
    ∵BE∥OP,∴△DBE∽△DPO,
    ∴,即,解得BD=.
    21、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
    (2)y的取值范围是﹣3≤y<1.
    (2)b的取值范围是﹣<b<.
    【解析】
    (1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
    【详解】
    (1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
    令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
    (2)y=-2x-2=-3.
    ∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
    ∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
    (2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
    当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
    由函数图象可知;b的取值范围是:-2<b<.
    【点睛】
    本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
    22、 作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小
    【解析】
    (1)利用勾股定理计算即可;
    (2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.
    【详解】
    解:(1)AC==.
    故答案为.
    (2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.

    故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.
    【点睛】
    本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.
    23、(1);(2),见解析.
    【解析】
    (1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;
    (2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.
    【详解】
    解:(1)∵四只鞋子中右脚鞋有2只,
    ∴随手拿出一只,恰好是右脚鞋的概率为=,
    故答案为:;
    (2)画树状图如下:

    共有12种等可能的结果,其中两只恰好为一双的情况有4种,
    ∴拿出两只,恰好为一双的概率为=.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    24、证明见解析.
    【解析】
    试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
    试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
    考点:平行四边形的判定与性质.

    相关试卷

    江苏省苏州市姑苏区胥江实验中学2024年九年级中考二模数学试题: 这是一份江苏省苏州市姑苏区胥江实验中学2024年九年级中考二模数学试题,共8页。

    2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析: 这是一份2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析,共18页。试卷主要包含了学校小组名同学的身高,下列计算错误的是等内容,欢迎下载使用。

    2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析: 这是一份2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map