![江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13558649/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13558649/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13558649/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析
展开
这是一份江苏省苏州市园区重点名校2022年中考数学最后冲刺浓缩精华卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为( )
A. B. C. D.
2.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
A. B. C. D.
3.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为( )
A. B. C. D.
4.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )
A. B.2 C. D.
5.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )
A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
6.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( )
A.172 B.171 C.170 D.168
7.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
A. B.
C. D.
8.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )
A.3 个 B.4 个 C.7 个 D.8 个
9.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
10.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是( )
A.①② B.②③ C.①④ D.③④
11.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是( )
A.1 B. C.2 D.
12.在代数式 中,m的取值范围是( )
A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cos∠AMC ,则 tan∠B 的值为__________.
14.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.
15.若y=,则x+y= .
16.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.
17.计算:+=______.
18.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)综合与实践﹣猜想、证明与拓广
问题情境:
数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.
猜想证明
(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;
(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:
小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…
小丽:连接AF,图中出现新的等腰三角形,如△AFB,…
小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.
请你参考同学们的思路,完成证明;
(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;
联系拓广:
(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).
20.(6分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标;
(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
21.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
22.(8分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
(1)求证;四边形PBEC是平行四边形;
(2)填空:
①当AP的值为 时,四边形PBEC是矩形;
②当AP的值为 时,四边形PBEC是菱形.
23.(8分)先化简,再求值:,其中a为不等式组的整数解.
24.(10分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
25.(10分)如图,四边形ABCD中,∠C=90°,AD⊥DB,点E为AB的中点,DE∥BC.
(1)求证:BD平分∠ABC;
(2)连接EC,若∠A=30°,DC=,求EC的长.
26.(12分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
27.(12分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
【详解】
现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
依题意得:,
故选A.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
2、D
【解析】
根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
【详解】
A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
B、∵x1<x2,
∴△=b2-4ac>0,故本选项错误;
C、若a>0,则x1<x0<x2,
若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
D、若a>0,则x0-x1>0,x0-x2<0,
所以,(x0-x1)(x0-x2)<0,
∴a(x0-x1)(x0-x2)<0,
若a<0,则(x0-x1)与(x0-x2)同号,
∴a(x0-x1)(x0-x2)<0,
综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
3、D
【解析】
解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.
点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
4、C
【解析】
过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
【详解】
过O作OC⊥AB,交圆O于点D,连接OA,
由折叠得到CD=OC=OD=1cm,
在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
即AC2+1=4,
解得:AC=cm,
则AB=2AC=2cm.
故选C.
【点睛】
此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
5、D
【解析】
解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
故选D.
点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
6、C
【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.
【详解】
从小到大排列:
150,164,168,168,,172,176,183,185,
∴中位数为:(168+172)÷2=170.
故选C.
【点睛】
本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
7、D
【解析】
试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得
.
故选D.
考点:由实际问题抽象出二元一次方程组
8、D
【解析】
试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
解:使△ABC是等腰三角形,
当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
所以共8个.
故选D.
点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
9、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
10、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax2+bx,则2=9a+1b
∴b=,
∴a﹣b=a﹣()=4a﹣>-,故②正确;
由正弦定义sinα=,则③正确;
不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x≥1或x≤0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sinα公式,不等式的解集.
11、B
【解析】
连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.
【详解】
解:连接AG、GE、EC,
则四边形ACEG为正方形,故=.
故选:B.
【点睛】
本题考查了正多边形的性质,正确作出辅助线是关键.
12、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据cos∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
【详解】
解:∵cos∠AMC ,
,
设, ,
∴在Rt△ACM中,
∵AM 是 BC 边上的中线,
∴BM=MC=3x,
∴BC=6x,
∴在Rt△ABC中,,
故答案为:.
【点睛】
本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
14、(15-5).
【解析】
试题解析:∵C为线段AB的黄金分割点(AC>BC),
∴AC=AB=AC=×10=5-5,
∴BC=AB-AC=10-(5-5)=(15-5)cm.
考点:黄金分割.
15、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
16、
【解析】
由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的长,即可求△AFC的面积.
【详解】
解:四边形ABCD是矩形
,,
,
折叠
,
在中,,
,
.
故答案为:.
【点睛】
本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键.
17、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
18、且
【解析】
试题解析: ∵一元二次方程有两个不相等的实数根,
∴m−1≠0且△=16−4(m−1)>0,解得m
相关试卷
这是一份江苏省常州市重点达标名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是,不等式组的解集为等内容,欢迎下载使用。
这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。
这是一份2022年山东省菏泽市重点名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,四组数中等内容,欢迎下载使用。