终身会员
搜索
    上传资料 赚现金

    江苏省苏州市重点达标名校2022年中考四模数学试题含解析

    立即下载
    加入资料篮
    江苏省苏州市重点达标名校2022年中考四模数学试题含解析第1页
    江苏省苏州市重点达标名校2022年中考四模数学试题含解析第2页
    江苏省苏州市重点达标名校2022年中考四模数学试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州市重点达标名校2022年中考四模数学试题含解析

    展开

    这是一份江苏省苏州市重点达标名校2022年中考四模数学试题含解析,共22页。试卷主要包含了若关于x的一元二次方程,如果,那么代数式的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是某个几何体的三视图,该几何体是()

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    2.下列计算正确的是(    ).
    A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
    C.x6÷x3=x2 D.=2
    3.下列四个实数中,比5小的是( )
    A. B. C. D.
    4.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是(  )
    A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
    5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是(  )

    A.70° B.44° C.34° D.24°
    6.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    7.对于反比例函数,下列说法不正确的是(  )
    A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
    C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
    8.如果,那么代数式的值为( )
    A.1 B.2 C.3 D.4
    9.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)

    A.30.6米 B.32.1 米 C.37.9米 D.39.4米
    10.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是(  )

    A.135° B.115° C.65° D.50°
    二、填空题(共7小题,每小题3分,满分21分)
    11.化简:÷=_____.
    12.若有意义,则x的范围是_____.
    13.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
    (1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
    (1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.

    14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.

    15.阅读下面材料:
    在数学课上,老师提出如下问题:

    小亮的作法如下:

    老师说:“小亮的作法正确”
    请回答:小亮的作图依据是______.
    16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.

    17.计算:a6÷a3=_________.
    三、解答题(共7小题,满分69分)
    18.(10分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
    (1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
    (2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
    (3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
    19.(5分)先化简,再求值:,其中x为方程的根.
    20.(8分)(1)计算:;
    (2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
    21.(10分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
    (1)求线段AQ的长;(用含t的代数式表示)
    (2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
    (3)设△APQ的面积为S,求S与t的函数关系式;
    (4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.

    22.(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
    (1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
    (2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
    23.(12分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

    C
    D
    总计/t
    A


    200
    B
    x

    300
    总计/t
    240
    260
    500
    (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
    总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
    24.(14分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
    (1)求李华选择的美食是羊肉泡馍的概率;
    (2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.
    考点:由三视图判定几何体.
    2、D
    【解析】
    分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
    详解:(x+y)2=x2+2xy+y2,A错误;
    (-xy2)3=-x3y6,B错误;
    x6÷x3=x3,C错误;
    ==2,D正确;
    故选D.
    点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.
    3、A
    【解析】
    首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
    【详解】
    解:A、∵5<<6,
    ∴5﹣1<﹣1<6﹣1,
    ∴﹣1<5,故此选项正确;
    B、∵
    ∴,故此选项错误;
    C、∵6<<7,
    ∴5<﹣1<6,故此选项错误;
    D、∵4<<5,
    ∴,故此选项错误;
    故选A.
    【点睛】
    考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
    4、C
    【解析】
    根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
    故选C
    【点睛】
    本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    5、C
    【解析】
    易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
    【详解】
    ∵AB=BD,∠B=40°,
    ∴∠ADB=70°,
    ∵∠C=36°,
    ∴∠DAC=∠ADB﹣∠C=34°.
    故选C.
    【点睛】
    本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
    6、D
    【解析】
    分a>0和a<0两种情况分类讨论即可确定正确的选项
    【详解】
    当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
    当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
    故选D.
    【点睛】
    本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
    7、C
    【解析】
    由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,
    故选C.
    考点:反比例函数
    【点睛】
    本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
    8、A
    【解析】
    先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.
    【详解】
    解:∵原式=
    =
    =
    ∵3x-4y=0,
    ∴3x=4y
    原式==1
    故选:A.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
    9、D
    【解析】
    解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.

    10、B
    【解析】
    由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= ∠AOB,然后根据圆内接四边形的性质求解.
    【详解】
    解:在圆上取点 P ,连接 PA 、 PB.
    ∵OA=OB ,
    ∴∠OAB=∠OBA=25° ,
    ∴∠AOB=180°−2×25°=130° ,
    ∴∠P=∠AOB=65°,
    ∴∠ACB=180°−∠P=115°.

    故选B.
    【点睛】
    本题考查的是圆,熟练掌握圆周角定理是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、m
    【解析】
    解:原式=•=m.故答案为m.
    12、x≤1.
    【解析】
    根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.
    【详解】
    依题意得:1﹣x≥0且x﹣3≠0,
    解得:x≤1.
    故答案是:x≤1.
    【点睛】
    本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.
    13、4 ﹣
    【解析】
    解:(1)当a=1时,抛物线L的解析式为:y=x1,
    当y=1时,1=x1,
    ∴x=±,
    ∵B在第一象限,
    ∴A(﹣,1),B(,1),
    ∴AB=1,
    ∵向右平移抛物线L使该抛物线过点B,
    ∴AB=BC=1,
    ∴AC=4;
    (1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,
    设OK=t,则AB=BC=1t,
    ∴B(t,at1),
    根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,
    ∴O(0,0),G(4t,0),
    设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),
    y=a3x(x﹣4t),
    ∵该抛物线过点B(t,at1),
    ∴at1=a3t(t﹣4t),
    ∵t≠0,
    ∴a=﹣3a3,
    ∴=﹣,
    故答案为(1)4;(1)﹣.

    点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.
    14、0.7
    【解析】
    用通话时间不足10分钟的通话次数除以通话的总次数即可得.
    【详解】
    由图可知:小明家3月份通话总次数为20+15+10+5=50(次);
    其中通话不足10分钟的次数为20+15=35(次),
    ∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.
    故答案为0.7.
    15、两点确定一条直线;同圆或等圆中半径相等
    【解析】
    根据尺规作图的方法,两点之间确定一条直线的原理即可解题.
    【详解】
    解:∵两点之间确定一条直线,CD和AB都是圆的半径,
    ∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.
    【点睛】
    本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.
    16、1
    【解析】
    由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.
    【详解】
    解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,
    ∴△ABD∽△ECD,
    ∴,
    即 ,
    解得:AB= =1(米).
    故答案为1.
    【点睛】
    本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.
    17、a1
    【解析】
    根据同底数幂相除,底数不变指数相减计算即可
    【详解】
    a6÷a1=a6﹣1=a1.故答案是a1
    【点睛】
    同底数幂的除法运算性质

    三、解答题(共7小题,满分69分)
    18、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
    【解析】
    (1)根据定义,认真审题即可解题,
    (1)在直角三角形PHQ中勾股定理解题即可,
    (3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
    【详解】
    解:(1)∵OF=OM=1,
    ∴点F、点M在⊙上,
    ∴F、M是⊙O的“关联点”,
    故答案为F,M.
    (1)如图1,过点Q作QH⊥x轴于H.

    ∵PH=1,QH=n,PQ=.
    ∴由勾股定理得,PH1+QH1=PQ1,
    即11+n1=()1,
    解得,n=1或﹣1.
    (3)由y=﹣x+4,知A(3,0),B(0,4)
    ∴可得AB=5
    ①如图1(1),当⊙D与线段AB相切于点T时,连接DT.

    则DT⊥AB,∠DTB=90°
    ∵sin∠OBA=,
    ∴可得DT=DH1=,
    ∴m1=,
    ②如图1(1),当⊙D过点A时,连接AD.

    由勾股定理得DA==DH1=.
    综合①②可得:≤m≤或 ≤m≤.
    【点睛】
    本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
    19、1
    【解析】
    先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
    【详解】
    解:原式=.
    解得,

    ∵时,无意义,
    ∴取.
    当时,原式=.
    20、(1);(1)1.
    【解析】
    (1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;
    (1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.
    【详解】
    (1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;
    (1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,
    当a﹣b=时,
    原式=()1=1.
    【点睛】
    本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.
    21、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
    【解析】
    分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
    (3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
    详解:(1)如图1,

    Rt△ABC中,∠A=30°,AB=8,
    ∴BC=AB=4,
    ∴AC=,
    由题意得:CQ=t,
    ∴AQ=4﹣t;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
    ①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
    ②当PQ⊥AB时,如图2,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,
    ∴,
    t=;
    ③当PQ⊥AC时,如图3,

    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cos30°=,

    t=;
    综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
    (3)分两种情况:
    ①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,

    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
    ②当P在边BC上时,即1<t≤3,如图5,

    由题意得:PB=2(t﹣1),
    ∴PC=4﹣2(t﹣1)=﹣2t+6,
    ∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
    综上所述,S与t的函数关系式为:S=;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
    ①当P在边AB上时,如图6,

    AP=PQ,作PG⊥AC于G,则AG=GQ,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴AG=4t,
    由AQ=2AG得:4﹣t=8t,t=,
    ②当P在边AC上时,如图7,AQ=PQ,

    Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
    ∴,
    t=或﹣(舍),
    综上所述,t的值为或.
    点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
    22、 (1) 1;(1) ≤m<.
    【解析】
    (1)在Rt△ABP中利用勾股定理即可解决问题;
    (1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    【详解】
    解:(1):(1)如图1中,设PD=t.则PA=5-t.

    ∵P、B、E共线,
    ∴∠BPC=∠DPC,
    ∵AD∥BC,
    ∴∠DPC=∠PCB,
    ∴∠BPC=∠PCB,
    ∴BP=BC=5,
    在Rt△ABP中,∵AB1+AP1=PB1,
    ∴31+(5-t)1=51,
    ∴t=1或9(舍弃),
    ∴t=1时,B、E、P共线.
    (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
    作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3

    易证四边形EMCQ是矩形,
    ∴CM=EQ=1,∠M=90°,
    ∴EM=,
    ∵∠DAC=∠EDM,∠ADC=∠M,
    ∴△ADC∽△DME,


    ∴AD=,
    如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3

    在Rt△ECQ中,QC=DM=,
    由△DME∽△CDA,

    ∴,
    ∴AD=,
    综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
    【点睛】
    本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.
    23、(1)见解析;(2)w=2x+9200,方案见解析;(3)0

    相关试卷

    江苏省苏州市重点达标名校2022年中考数学四模试卷含解析:

    这是一份江苏省苏州市重点达标名校2022年中考数学四模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,方程x2+2x﹣3=0的解是,下列各数中,最小的数是,一、单选题等内容,欢迎下载使用。

    江苏省苏州市高新区达标名校2022年中考四模数学试题含解析:

    这是一份江苏省苏州市高新区达标名校2022年中考四模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年江苏省苏州市苏州工业园区重点名校中考数学四模试卷含解析:

    这是一份2022年江苏省苏州市苏州工业园区重点名校中考数学四模试卷含解析,共22页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map