终身会员
搜索
    上传资料 赚现金

    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析

    立即下载
    加入资料篮
    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析第1页
    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析第2页
    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析

    展开

    这是一份江苏省无锡市华士片市级名校2021-2022学年中考三模数学试题含解析,共26页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。


    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )
    A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8
    2.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )
    A.(2,0)B.(3,0)C.(2,-1)D.(2,1)
    3.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=( )
    A.20°B.35°C.15°D.45°
    4.下列计算结果等于0的是( )
    A.B.C.D.
    5.若二次函数的图像与轴有两个交点,则实数的取值范围是( )
    A.B.C.D.
    6.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是( )
    A.或B.或
    C.或D.或
    7.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
    A.4B.5C.6D.7
    8.如图,圆O是等边三角形内切圆,则∠BOC的度数是( )
    A.60°B.100°C.110°D.120°
    9.如果,那么代数式的值是( )
    A.6B.2C.-2D.-6
    10.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )
    A.B.C.D.
    11.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是( )
    A.①②B.②③C.①③D.①②③
    12.下列计算正确的是( )
    A.B.(﹣a2)3=a6C.D.6a2×2a=12a3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若,则= .
    14.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
    15.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.
    16.如图,在菱形ABCD中,DE⊥AB于点E,csA=,BE=4,则tan∠DBE的值是_____.
    17.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.
    18.计算:3﹣(﹣2)=____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点
    求m的值及C点坐标;
    在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
    为抛物线上一点,它关于直线BC的对称点为Q
    当四边形PBQC为菱形时,求点P的坐标;
    点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.
    20.(6分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
    (1)求李华选择的美食是羊肉泡馍的概率;
    (2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
    21.(6分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
    22.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
    (1)求证:△AEF≌△DEB;
    (2)证明四边形ADCF是菱形;
    (3)若AC=4,AB=5,求菱形ADCFD 的面积.
    23.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
    24.(10分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
    (1)求证:GF=BF;
    (2)若EB=1,BC=4,求AG的长;
    (3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.
    25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.
    (1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
    (2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
    26.(12分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
    27.(12分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
    (1)线段AE=______;
    (2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
    (3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000071的小数点向或移动7位得到7.1,
    所以0.00000071用科学记数法表示为7.1×10﹣7,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、B
    【解析】
    试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
    试题解析:AC=2,
    则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,
    则OC′=3,
    故C′的坐标是(3,0).
    故选B.
    考点:坐标与图形变化-旋转.
    3、A
    【解析】
    根据∠ABD=35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得∠DBC
    【详解】
    解:∵∠ABD=35°,
    ∴的度数都是70°,
    ∵BD为直径,
    ∴的度数是180°﹣70°=110°,
    ∵点A为弧BDC的中点,
    ∴的度数也是110°,
    ∴的度数是110°+110°﹣180°=40°,
    ∴∠DBC==20°,
    故选:A.
    【点睛】
    本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.
    4、A
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    解:A、原式=0,符合题意;
    B、原式=-1+(-1)=-2,不符合题意;
    C、原式=-1,不符合题意;
    D、原式=-1,不符合题意,
    故选:A.
    【点睛】
    本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
    5、D
    【解析】
    由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.
    【详解】
    ∵抛物线y=x2-2x+m与x轴有两个交点,
    ∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,
    解得:m<1.
    故选D.
    【点睛】
    本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.
    6、B
    【解析】
    根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.
    【详解】
    观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,
    ∴使成立的取值范围是或,
    故选B.
    【点睛】
    本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.
    7、C
    【解析】
    试题解析:∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=10°,
    ∴边数n=310°÷10°=1.
    故选C.
    考点:多边形内角与外角.
    8、D
    【解析】
    由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
    【详解】
    解:∵△ABC是等边三角形,
    ∴∠A=∠ABC=∠ACB=60°,
    ∵圆O是等边三角形内切圆,
    ∴OB、OC是∠ABC、∠ACB的角平分线,
    ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
    ∴∠BOC=180°﹣60=120°,
    故选D.
    【点睛】
    此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).
    9、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    10、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,
    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    11、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    12、D
    【解析】
    根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.
    【详解】
    ,A选项错误;(﹣a2)3=- a6,B错误;,C错误;. 6a2×2a=12a3 ,D正确;故选:D.
    【点睛】
    本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    14、,.
    【解析】
    试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
    试题解析:如图:
    当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为矩形;
    当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
    ∵B1C1=1,
    ∴BB1=,
    当点B的移动距离为时,四边形ABC1D1为菱形.
    考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
    15、1.
    【解析】
    ∵∠AOB=∠COD,
    ∴S阴影=S△AOB.
    ∵四边形ABCD是平行四边形,
    ∴OA=AC=×1=2.
    ∵AB⊥AC,
    ∴S阴影=S△AOB=OA•AB=×2×1=1.
    【点睛】
    本题考查了扇形面积的计算.
    16、1.
    【解析】
    求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵csA=,BE=4,DE⊥AB,
    ∴设AD=AB=5x,AE=3x,
    则5x﹣3x=4,
    x=1,
    即AD=10,AE=6,
    在Rt△ADE中,由勾股定理得:
    在Rt△BDE中,
    故答案为:1.
    【点睛】
    本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.
    17、
    【解析】
    解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案为.

    点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    18、2+2
    【解析】
    根据平面向量的加法法则计算即可.
    【详解】
    3﹣(﹣2)
    =3﹣+2
    =2+2,
    故答案为:2+2,
    【点睛】
    本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、,;存在,;或;当时,.
    【解析】
    (1)用待定系数法求出抛物线解析式;
    (2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
    (3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
    ②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
    【详解】
    解:(1)将B(4,0)代入,解得,m=4,
    ∴二次函数解析式为,令x=0,得y=4,
    ∴C(0,4);
    (2)存在,理由:∵B(4,0),C(0,4),
    ∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
    ∴,
    ∴,
    ∴△=1﹣4b=0,∴b=4,
    ∴,∴M(2,6);
    (3)①如图,∵点P在抛物线上,
    ∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
    ∴线段BC的垂直平分线的解析式为y=x,
    ∴m=,
    ∴m=,
    ∴P(,)或P(,);
    ②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
    ∵点D在直线BC上,∴D(t,﹣t+4),
    ∵PD=﹣(﹣t+4)=,BE+CF=4,
    ∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
    ∵0<t<4,
    ∴当t=2时,S四边形PBQC最大=1.
    考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.
    20、(1);(2)见解析.
    【解析】
    (1)直接根据概率的意义求解即可;
    (2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.
    【详解】
    解:(1)李华选择的美食是羊肉泡馍的概率为;
    (2)列表得:
    由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,
    所以李华和王涛选择的美食都是凉皮的概率为=.
    【点睛】
    本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.
    21、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.
    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    22、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,
    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,
    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    23、(1);(1) ;(3);
    【解析】
    (1)直接根据概率公式求解;
    (1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
    (3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
    【详解】
    解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
    (1)画树状图为:
    共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
    所以一个径赛项目和一个田赛项目的概率P1==;
    (3)两个项目都是径赛项目的结果数为6,
    所以两个项目都是径赛项目的概率P1==.
    故答案为.
    考点:列表法与树状图法.
    24、(1)证明见解析;(2)AG=;(3)证明见解析.
    【解析】
    (1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;
    (2)根据勾股定理求出AE,根据相似三角形的性质计算即可;
    (3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴AD∥BC,AB∥CD,AD=CD,
    ∵GF∥BE,
    ∴GF∥BC,
    ∴GF∥AD,
    ∴,
    ∵AB∥CD,

    ∵AD=CD,
    ∴GF=BF;
    (2)∵EB=1,BC=4,
    ∴=4,AE=,
    ∴=4,
    ∴AG=;
    (3)延长GF交AM于H,
    ∵GF∥BC,
    ∴FH∥BC,
    ∴,
    ∴,
    ∵BM=BE,
    ∴GF=FH,
    ∵GF∥AD,
    ∴,,
    ∴,
    ∴,
    ∴FO•ED=OD•EF.
    【点睛】
    本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.
    25、(1),,;(2)作图见解析,面积,.
    【解析】
    (1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;
    (2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.
    【详解】
    解:(1)由在平面直角坐标系中的位置可得:
    ,,,
    ∵与关于原点对称,
    ∴,,
    (2)如图所示,即为所求,
    ∵,,
    ∴,
    ∴,
    ∵,
    ∴在旋转过程中所扫过的面积:
    点所经过的路径:

    【点睛】
    本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.
    26、(1)必然,不可能;(2);(3)此游戏不公平.
    【解析】
    (1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;
    (2)直接利用概率公式求出答案;
    (3)首先画出树状图,进而利用概率公式求出答案.
    【详解】
    (1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;
    故答案为必然,不可能;
    (2)从中任意抽取1个球恰好是红球的概率是:;
    故答案为;
    (3)如图所示:

    由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;
    则选择乙的概率为:,
    故此游戏不公平.
    【点睛】
    此题主要考查了游戏公平性,正确列出树状图是解题关键.
    27、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.
    【解析】
    (1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
    (2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;
    (3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得
    【详解】
    (1)∵四边形ABCD为矩形,
    ∴BC=AD=5,
    ∵BE∶CE=3∶2,
    则BE=3,CE=2,
    ∴AE===5.
    (2)如图1,
    当点P在线段AB上运动时,即0≤t≤4,
    ∵PF∥BE,
    ∴=,即=,
    ∴AF=t,
    则EF=AE-AF=5-t,即y=5-t(0≤t≤4);
    如图2,
    当点P在射线AB上运动时,即t>4,
    此时,EF=AF-AE=t-5,即y=t-5(t>4);
    综上,;
    (3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:
    ①当t=0或t=4时,显然符合条件的⊙F不存在;
    ②当0<t<4时,如解图1,作FG⊥BC于点G,
    则FG=BP=4-t,
    ∵PF∥BC,
    ∴△APF∽△ABE,
    ∴=,即=,
    ∴PF=t,
    由4-t=t可得t=,
    则此时⊙F的半径PF=;
    ③当t>4时,如解图2,同理可得FG=t-4,PF=t,
    由t-4=t可得t=16,
    则此时⊙F的半径PF=12.
    【点睛】
    本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    E
    F
    G
    H
    A
    AE
    AF
    AG
    AH
    B
    BE
    BF
    BG
    BH
    C
    CE
    CF
    CG
    CH
    D
    DE
    DF
    DG
    DH

    相关试卷

    江苏省无锡市江阴市华士片2021-2022学年中考四模数学试题含解析:

    这是一份江苏省无锡市江阴市华士片2021-2022学年中考四模数学试题含解析,共20页。试卷主要包含了已知二次函数y=,下列运算结果正确的是等内容,欢迎下载使用。

    江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析:

    这是一份江苏省无锡市部分市区市级名校2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,下列命题是真命题的是等内容,欢迎下载使用。

    江苏省江阴市华士片、澄东片重点达标名校2022年中考适应性考试数学试题含解析:

    这是一份江苏省江阴市华士片、澄东片重点达标名校2022年中考适应性考试数学试题含解析,共21页。试卷主要包含了关于x的方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map