江苏省锡山高级中学2022年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )
A.0 B.1 C.2 D.3
2.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
3.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
4.下列等式正确的是( )
A.x3﹣x2=x B.a3÷a3=a
C. D.(﹣7)4÷(﹣7)2=﹣72
5.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高( )
A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
7.四个有理数﹣1,2,0,﹣3,其中最小的是( )
A.﹣1 B.2 C.0 D.﹣3
8.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
9.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )
A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×105
10.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
A.3 B.4 C.5 D.6
11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
A. B. C. D.
12.下列等式正确的是( )
A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1
C.a3+a3=a6 D.(ab)2=a
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.的算术平方根是_____.
14.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.
15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°
16.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)
17.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)
18.化简:=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
20.(6分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
21.(6分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.
22.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
23.(8分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
24.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
25.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
26.(12分)如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
27.(12分)解不等式组并写出它的整数解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
【详解】
详解:∵四边形ABCD是正方形,
∴AD=BC,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵
∴
∴
∴AQ⊥DP;
故①正确;
②无法证明,故错误.
∵BP=1,AB=3,
∴
∴ 故③正确,
故选C.
【点睛】
考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
2、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
3、B
【解析】
先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.
【详解】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
设CD=1,CF=x,则CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,
CF2+CD2=DF2,
即x2+1=(2-x)2,
解得:x=,
∴sin∠BED=sin∠CDF=.
故选B.
【点睛】
本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.
4、C
【解析】
直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案.
【详解】
解:A、x3-x2,无法计算,故此选项错误;
B、a3÷a3=1,故此选项错误;
C、(-2)2÷(-2)3=-,正确;
D、(-7)4÷(-7)2=72,故此选项错误;
故选C.
【点睛】
此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键.
5、C
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
∴c<1;故①正确;
②对称轴
∴ ∴b<1;
故②正确;
③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
④故本选项正确.
正确的有3项
故选C.
【点睛】
本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
6、A
【解析】
用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.
【详解】
8-(-2)=8+2=10℃.
即这天的最高气温比最低气温高10℃.
故选A.
7、D
【解析】
解:∵-1<-1<0<2,∴最小的是-1.故选D.
8、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
∵3804.2千=3804200,
∴3804200=3.8042×106;
故选:C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
和为2的只有1+1;
和为3的有1+2;2+1;
和为1的有1+3;2+2;3+1;
和为5的有1+1;2+3;3+2;1+1;
和为6的有2+1;1+2;
和为7的有3+1;1+3;
和为8的有1+1.
故p(5)最大,故选C.
11、B
【解析】
过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.
【详解】
过F作FH⊥AD于H,交ED于O,则FH=AB=1.
∵BF=1FC,BC=AD=3,
∴BF=AH=1,FC=HD=1,
∴AF===,
∵OH∥AE,
∴=,
∴OH=AE=,
∴OF=FH﹣OH=1﹣=,
∵AE∥FO,∴△AME∽△FMO,
∴=,∴AM=AF=,
∵AD∥BF,∴△AND∽△FNB,
∴=,
∴AN=AF=,
∴MN=AN﹣AM=﹣=,故选B.
【点睛】
构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线
12、B
【解析】
(1)根据完全平方公式进行解答;
(2)根据合并同类项进行解答;
(3)根据合并同类项进行解答;
(4)根据幂的乘方进行解答.
【详解】
解:A、(a+b)2=a2+2ab+b2,故此选项错误;
B、3n+3n+3n=3n+1,正确;
C、a3+a3=2a3,故此选项错误;
D、(ab)2=a2b,故此选项错误;
故选B.
【点睛】
本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
∵=8,()2=8,
∴的算术平方根是.
故答案为:.
14、
【解析】
解:如图,作OH⊥DK于H,连接OK,
∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
∴根据折叠对称的性质,A'D=2CD.
∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
∴∠DOK=120°.
∴扇形ODK的面积为.
∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
∴△ODK的面积为.
∴半圆还露在外面的部分(阴影部分)的面积是:.
故答案为:.
15、57°.
【解析】
根据平行线的性质和三角形外角的性质即可求解.
【详解】
由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.
【点睛】
本题考查平行线的性质及三角形外角的性质.
16、60
【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
【详解】
∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
∴+=100, 解得,AD≈60
考点:解直角三角形的应用.
17、40.0
【解析】
首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.
【详解】
过点A作AE∥BD,交CD于点E,
∵AB⊥BD,CD⊥BD,
∴∠BAE=∠ABD=∠BDE=90°,
∴四边形ABDE是矩形,
∴AE=BD=20m,DE=AB=0.8m,
在Rt△ACE中,∠CAE=63°,
∴CE=AE•tan63°=20×1.96≈39.2(m),
∴CD=CE+DE=39.2+0.8=40.0(m).
答:筒仓CD的高约40.0m,
故答案为:40.0
【点睛】
此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.
18、-6
【解析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
【详解】
,
故答案为-6
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、该工程队原计划每周修建5米.
【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
【详解】
设该工程队原计划每周修建x米.
由题意得:+1.
整理得:x2+x﹣32=2.
解得:x1=5,x2=﹣6(不合题意舍去).
经检验:x=5是原方程的解.
答:该工程队原计划每周修建5米.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
20、(1)见解析;(2)见解析;(3)见解析,.
【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
【详解】
解:(1)如图所示;
(2)如图所示;(3)如图所示;CE=.
【点睛】
本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
21、(1)证明见解析;(2)阴影部分的面积为.
【解析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
∵AC平分∠BAE, ∴∠OAC=∠CAE,
∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
(2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
∴DB=OB=OC=AD=4,DO=8,
∴CD=
∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
∴阴影部分的面积为8﹣.
22、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
23、 (1)y=2x+2(2)这位乘客乘车的里程是15km
【解析】
(1)根据函数图象可以得出出租车的起步价是8元,设当x>3时,y与x的函数关系式为y=kx+b(k≠0),运用待定系数法就可以求出结论;
(2)将y=32代入(1)的解析式就可以求出x的值.
【详解】
(1)由图象得:
出租车的起步价是8元;
设当x>3时,y与x的函数关系式为y=kx+b(k≠0),由函数图象,得
,
解得:
故y与x的函数关系式为:y=2x+2;
(2)∵32元>8元,
∴当y=32时,
32=2x+2,
x=15
答:这位乘客乘车的里程是15km.
24、(1)见解析;(2)
【解析】
分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.
25、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
26、(1)详见解析;(2)1.
【解析】
(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.
(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.
【详解】
(1)证明:由题意可知:
∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
∴△AOD≌△COE(AAS),
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)解:当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9﹣AO,
∴
可得AO=4,
∴DE=6,AC=8,
∴
【点睛】
考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.
27、不等式组的解集是5<x≤1,整数解是6,1
【解析】
先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
【详解】
∵解①得:x>5,
解不等式②得:x≤1,
∴不等式组的解集是5<x≤1,
∴不等式组的整数解是6,1.
【点睛】
本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
2023年江苏省无锡市锡山区天一实验中学中考数学三模试卷(含解析): 这是一份2023年江苏省无锡市锡山区天一实验中学中考数学三模试卷(含解析),共35页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省无锡市惠山区锡山高级中学实验学校中考数学三模试卷(含解析): 这是一份2023年江苏省无锡市惠山区锡山高级中学实验学校中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省无锡市锡山高级中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。