终身会员
搜索
    上传资料 赚现金

    江苏省徐州市区2022年中考数学押题试卷含解析

    立即下载
    加入资料篮
    江苏省徐州市区2022年中考数学押题试卷含解析第1页
    江苏省徐州市区2022年中考数学押题试卷含解析第2页
    江苏省徐州市区2022年中考数学押题试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省徐州市区2022年中考数学押题试卷含解析

    展开

    这是一份江苏省徐州市区2022年中考数学押题试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
    A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
    2.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
    A.0<x≤1 B.1≤x< C.0<x≤ D.x>
    3.如图是一个几何体的三视图,则这个几何体是( )

    A. B. C. D.
    4.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为(  )
    A.3122×10 8元 B.3.122×10 3元
    C.3122×10 11 元 D.3.122×10 11 元
    5.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
    A.4 B.5 C.6 D.7
    6.下列四个几何体中,主视图与左视图相同的几何体有(  )

    A.1个 B.2个 C.3个 D.4个
    7.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为(  )
    A.8.1×106 B.8.1×105 C.81×105 D.81×104
    8.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(   )

    A.5 B.7 C.9 D.11
    9.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )

    A.60° B.50° C.40° D.30°
    10.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为(  )
    A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
    11.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(  )

    A.7 B.10 C.11 D.12
    12.估计5﹣的值应在(  )
    A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.

    14.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是(  )
    A. B. C. D.
    15.如图AB是直径,C、D、E为圆周上的点,则______.

    16.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.
    17.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.

    18.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解方程:=1.
    20.(6分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
    (1)求证:四边形DEBF是菱形;
    (2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为   ,并在图上标出此时点P的位置.

    21.(6分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.

    22.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
    请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是   个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有   人.
    23.(8分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.

    (1)求点A、B、D的坐标;
    (2)求一次函数和反比例函数的解析式.
    24.(10分)先化简,再求值:(1﹣)÷,其中x=1.
    25.(10分)在中, , 是的角平分线,交于点 .
    (1)求的长;
    (2)求的长.

    26.(12分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.
    (1)求抛物线的解析式,并直接写出点D的坐标;
    (2)当△AMN的周长最小时,求t的值;
    (3)如图②,过点M作ME⊥x轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

    27.(12分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.
    (1)求证:PB=BC;
    (2)试判断四边形BOCD的形状,并说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    直接利用配方法将原式变形,进而利用平移规律得出答案.
    【详解】
    y=x2﹣6x+21
    =(x2﹣12x)+21
    =[(x﹣6)2﹣16]+21
    =(x﹣6)2+1,
    故y=(x﹣6)2+1,向左平移2个单位后,
    得到新抛物线的解析式为:y=(x﹣4)2+1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
    2、C
    【解析】
    如下图,设⊙O与射线AC相切于点D,连接OD,
    ∴∠ADO=90°,
    ∵∠BAC=45°,
    ∴△ADO是等腰直角三角形,
    ∴AD=DO=1,
    ∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,
    ∴x的取值范围是.
    故选C.

    3、B
    【解析】
    试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
    考点:由三视图判断几何体.
    4、D
    【解析】
    可以用排除法求解.
    【详解】
    第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
    【点睛】
    牢记科学记数法的规则是解决这一类题的关键.
    5、C
    【解析】
    试题解析:∵多边形的每一个内角都等于120°,
    ∴多边形的每一个外角都等于180°-120°=10°,
    ∴边数n=310°÷10°=1.
    故选C.
    考点:多边形内角与外角.
    6、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.
    7、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    810 000=8.1×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、B
    【解析】
    试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
    9、C
    【解析】
    先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵∠1=180°﹣100°=80°,a∥c,
    ∴∠α=180°﹣80°﹣60°=40°.
    故选:C.

    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
    10、B
    【解析】
    解:3400000=.
    故选B.
    11、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=4,CD=AB=6,
    ∵由作法可知,直线MN是线段AC的垂直平分线,
    ∴AE=CE,
    ∴AE+DE=CE+DE=AD,
    ∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
    故选B.
    12、C
    【解析】
    先化简二次根式,合并后,再根据无理数的估计解答即可.
    【详解】
    5﹣=,
    ∵49<54<64,
    ∴7<<8,
    ∴5﹣的值应在7和8之间,
    故选C.
    【点睛】
    本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、4
    【解析】
    连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.
    【详解】
    如图,连接并延长交于G,连接并延长交于H,
    ∵点E、F分别是和的重心,
    ∴,,,,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    故答案为:4

    【点睛】
    本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
    14、A
    【解析】
    该班男生有x人,女生有y人.根据题意得:,
    故选D.
    考点:由实际问题抽象出二元一次方程组.
    15、90°
    【解析】
    连接OE,根据圆周角定理即可求出答案.
    【详解】
    解:连接OE,

    根据圆周角定理可知:
    ∠C=∠AOE,∠D=∠BOE,
    则∠C+∠D=(∠AOE+∠BOE)=90°,
    故答案为:90°.
    【点睛】
    本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    16、
    【解析】
    列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
    【详解】
    解:列表如下:

    -2
    -1
    1
    2
    -2

    2
    -2
    -4
    -1
    2

    -1
    -2
    1
    -2
    -1

    2
    2
    -4
    -2
    2

    由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
    ∴积为大于-4小于2的概率为=,
    故答案为:.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    17、
    【解析】
    根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
    【详解】
    解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
    【点睛】
    本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
    18、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,

    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、x=1
    【解析】
    方程两边同乘转化为整式方程,解整式方程后进行检验即可得.
    【详解】
    解:方程两边同乘得:

    整理,得,
    解这个方程得,,
    经检验,是增根,舍去,
    所以,原方程的根是.
    【点睛】
    本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.
    20、(1)详见解析;(2).
    【解析】
    (1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;
    (2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.
    【详解】
    (1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.
    ∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.
    同理,BF=DF.
    ∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;
    (2)连接BF.
    ∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.
    ∵M是BF的中点,∴EM⊥BF.
    则EM=BE•sin60°=4×=2.
    即PF+PM的最小值是2.
    故答案为:2.

    【点睛】
    本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.
    21、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.
    【解析】
    【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;
    (2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;
    (3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.
    【详解】(1)如图,连接OD,
    ∵BC是⊙O的直径,
    ∴∠BAC=90°,
    ∵AD平分∠BAC,
    ∴∠BAC=2∠BAD,
    ∵∠BOD=2∠BAD,
    ∴∠BOD=∠BAC=90°,
    ∵DP∥BC,
    ∴∠ODP=∠BOD=90°,
    ∴PD⊥OD,
    ∵OD是⊙O半径,
    ∴PD是⊙O的切线;
    (2)∵PD∥BC,
    ∴∠ACB=∠P,
    ∵∠ACB=∠ADB,
    ∴∠ADB=∠P,
    ∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,
    ∴∠DCP=∠ABD,
    ∴△ABD∽△DCP;
    (3)∵BC是⊙O的直径,
    ∴∠BDC=∠BAC=90°,
    在Rt△ABC中,BC==13cm,
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴∠BOD=∠COD,
    ∴BD=CD,
    在Rt△BCD中,BD2+CD2=BC2,
    ∴BD=CD=BC=,
    ∵△ABD∽△DCP,
    ∴,
    ∴,
    ∴CP=16.9cm.

    【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.
    22、(1)图形见解析;(2)1;(3)1.
    【解析】
    (1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
    (2)根据众数的定义求解可得;
    (3)用总人数乘以样本中D和E人数占总人数的比例即可得.
    【详解】
    解:(1)∵被调查的总人数为20÷20%=100(人),
    则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
    补全图形如下:

    (2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
    故答案为1;
    (3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
    故答案为1.
    【点睛】
    此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
    23、(1)A(-1,0),B(0,1),D(1,0)
    (2)一次函数的解析式为 反比例函数的解析式为
    【解析】解:(1)∵OA=OB=OD=1,
    ∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。
    (2)∵点A、B在一次函数(k≠0)的图象上,
    ∴,解得。
    ∴一次函数的解析式为。
    ∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。
    又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。
    ∴反比例函数的解析式为。
    (1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。
    (2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。
    24、.
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
    【详解】
    原式==
    当x=1时,原式=.
    【点睛】
    本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
    25、(1)10;(2)的长为
    【解析】
    (1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.
    【详解】
    解:(1) 在中,
    ;
    (2 )过点作于,
    平分

    在和中

    ,


    .
    设,则
    在中,

    解得
    即的长为

    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.
    26、(1)y=x2﹣x,点D的坐标为(2,﹣);(2)t=2;(3)M点的坐标为(2,0)或(6,0).
    【解析】
    (1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;
    (2)连接AC,如图①,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明△AOC和△ACB都是等边三角形,接着证明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,则判断△CMN为等边三角形得到MN=CM,于是△AMN的周长=OA+CM,由于CM⊥OA时,CM的值最小,△AMN的周长最小,从而得到t的值;
    (3)先利用勾股定理的逆定理证明△OCD为直角三角形,∠COD=90°,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,△AME∽△COD,即|t-4|:4=|t2-t |:,当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标.
    【详解】
    解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得
    ,解得,
    ∴抛物线解析式为y=x2-x;
    ∵y=x2-x =-2) 2-;
    ∴点D的坐标为(2,-);
    (2)连接AC,如图①,

    AB==4,
    而OA=4,
    ∴平行四边形OCBA为菱形,
    ∴OC=BC=4,
    ∴C(2,2),
    ∴AC==4,
    ∴OC=OA=AC=AB=BC,
    ∴△AOC和△ACB都是等边三角形,
    ∴∠AOC=∠COB=∠OCA=60°,
    而OC=AC,OM=AN,
    ∴△OCM≌△ACN,
    ∴CM=CN,∠OCM=∠ACN,
    ∵∠OCM+∠ACM=60°,
    ∴∠ACN+∠ACM=60°,
    ∴△CMN为等边三角形,
    ∴MN=CM,
    ∴△AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,
    当CM⊥OA时,CM的值最小,△AMN的周长最小,此时OM=2,
    ∴t=2;
    (3)∵C(2,2),D(2,-),
    ∴CD=,
    ∵OD=,OC=4,
    ∴OD2+OC2=CD2,
    ∴△OCD为直角三角形,∠COD=90°,
    设M(t,0),则E(t,t2-t),
    ∵∠AME=∠COD,
    ∴当时,△AME∽△COD,即|t-4|:4=|t2-t |:,
    整理得|t2-t|=|t-4|,
    解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);
    当时,△AME∽△DOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,
    解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);
    解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);
    综上所述,M点的坐标为(2,0)或(6,0).
    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题.
    27、(1)见解析;(2)菱形
    【解析】
    试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;
    (2)由对角线互相垂直平分的四边形是菱形证明即可.
    试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;
    (2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.
    在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.


    相关试卷

    《2023年江苏省徐州市区部分中考数学五模试卷含解析及点睛》:

    这是一份《2023年江苏省徐州市区部分中考数学五模试卷含解析及点睛》,共20页。

    江苏省徐州市区联校2022年中考数学全真模拟试卷含解析:

    这是一份江苏省徐州市区联校2022年中考数学全真模拟试卷含解析,共19页。试卷主要包含了学校小组名同学的身高,估计5﹣的值应在等内容,欢迎下载使用。

    江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析:

    这是一份江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map