|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析01
    江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析02
    江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析

    展开
    这是一份江苏省盐城初级中学2021-2022学年中考数学全真模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,对于函数y=,下列说法正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )
    A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
    2.下列运算正确的是(  )
    A.x•x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x6
    3.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是(  )
    A.甲班 B.乙班 C.两班一样 D.无法确定
    4.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
    选手
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    时间(min)
    129
    136
    140
    145
    146
    148
    154
    158
    165
    175
    由此所得的以下推断不正确的是( )
    A.这组样本数据的平均数超过130
    B.这组样本数据的中位数是147
    C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
    D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
    5.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(  )
    A.9人 B.10人 C.11人 D.12人
    6.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是(  )

    A.a<0 B.b2-4ac<0 C.当-10 D.-=1
    7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    8.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为(  )

    A.4 B..5 C.6 D.8
    10.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    11.观察下列图形,则第n个图形中三角形的个数是(  )

    A.2n+2 B.4n+4 C.4n﹣4 D.4n
    12.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为(  )

    A.32° B.42° C.46° D.48°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.

    14.如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_____________.
    15.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数的图象恰好经过点A′,B,则的值为_________.

    16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是_____(请写出盈利或亏损)_____元.
    17.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
    18.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
    (1)求抛物线的解析式;
    (2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
    (3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

    20.(6分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.

    21.(6分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

    22.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.
    (1)求A,B两点的坐标及直线AC的函数表达式;
    (1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;
    (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.
    (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.

    23.(8分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)

    24.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有
    “好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.

    (1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.
    利用图中所提供的信息解决以下问题:
    ①小明一共统计了 个评价;
    ②请将图1补充完整;
    ③图2中“差评”所占的百分比是 ;
    (2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.
    25.(10分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    26.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,
    求证:△ABC≌△DEF.

    27.(12分)一道选择题有四个选项.
    (1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
    (2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
    【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
    ∴k>0,
    A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;
    B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
    C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;
    D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
    故选C.
    【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
    2、A
    【解析】
    根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:
    A、x•x4=x5,原式计算正确,故本选项正确;
    B、x6÷x3=x3,原式计算错误,故本选项错误;
    C、3x2﹣x2=2x2,原式计算错误,故本选项错误;
    D、(2x2)3=8x,原式计算错误,故本选项错误.
    故选A.
    3、B
    【解析】
    根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.
    【详解】
    ∵S甲2>S乙2,
    ∴成绩较为稳定的是乙班。
    故选:B.
    【点睛】
    本题考查了方差,解题的关键是掌握方差的概念进行解答.
    4、C
    【解析】
    分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
    详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
    点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
    5、C
    【解析】
    设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
    【详解】
    设参加酒会的人数为x人,依题可得:
    x(x-1)=55,
    化简得:x2-x-110=0,
    解得:x1=11,x2=-10(舍去),
    故答案为C.
    【点睛】
    考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.
    6、D
    【解析】
    试题分析:根据二次函数的图象和性质进行判断即可.
    解:∵抛物线开口向上,

    ∴A选项错误,
    ∵抛物线与x轴有两个交点,

    ∴B选项错误,
    由图象可知,当-1 ∴C选项错误,
    由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
    即-=1,
    ∴D选项正确,
    故选D.
    7、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    8、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    9、C
    【解析】
    解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
    ,
    即,
    解得EF=6,
    故选C.
    10、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    11、D
    【解析】
    试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
    解:根据给出的3个图形可以知道:
    第1个图形中三角形的个数是4,
    第2个图形中三角形的个数是8,
    第3个图形中三角形的个数是12,
    从而得出一般的规律,第n个图形中三角形的个数是4n.
    故选D.
    考点:规律型:图形的变化类.
    12、D
    【解析】
    根据平行线的性质与对顶角的性质求解即可.
    【详解】
    ∵a∥b,
    ∴∠BCA=∠2,
    ∵∠BAC=100°,∠2=32°
    ∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
    ∴∠1=∠CBA=48°.
    故答案选D.
    【点睛】
    本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、6
    【解析】
    试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,
    ∴AE=CE,
    设AB=AO=OC=x,
    则有AC=2x,∠ACB=30°,
    在Rt△ABC中,根据勾股定理得:BC=x,
    在Rt△OEC中,∠OCE=30°,
    ∴OE=EC,即BE=EC,
    ∵BE=3,
    ∴OE=3,EC=6,
    则AE=6
    故答案为6.
    14、
    【解析】
    分析:
    由已知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.
    详解:
    ∵反比例函数的图象经过点A(2,y1)与B(3,y2),
    ∴2y1=k,3y2=k,
    ∴2y1=3y2,
    ∴.
    故答案为:.
    点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.
    15、
    【解析】
    解:∵四边形ABCO是矩形,AB=1,
    ∴设B(m,1),
    ∴OA=BC=m,
    ∵四边形OA′B′D与四边形OABD关于直线OD对称,
    ∴OA′=OA=m,∠A′OD=∠AOD=30°,
    ∴∠A′OA=60°,
    过A′作A′E⊥OA于E,
    ∴OE=m,A′E=m,
    ∴A′(m,m),
    ∵反比例函数y=(k≠0)的图象恰好经过点A′,B,
    ∴m•m=m,
    ∴m=,
    ∴k=.

    【点睛】
    本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.
    16、亏损 1
    【解析】
    设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.
    【详解】
    设盈利20%的电子琴的成本为x元,
    x(1+20%)=960,
    解得x=10;
    设亏本20%的电子琴的成本为y元,
    y(1-20%)=960,
    解得y=1200;
    ∴960×2-(10+1200)=-1,
    ∴亏损1元,
    故答案是:亏损;1.
    【点睛】
    考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.
    17、9
    【解析】
    解:360÷40=9,即这个多边形的边数是9
    18、60°
    【解析】
    试题解析:∵∠ACB=90°,∠ABC=30°,
    ∴∠A=90°-30°=60°,
    ∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
    ∴AC=A′C,
    ∴△A′AC是等边三角形,
    ∴∠ACA′=60°,
    ∴旋转角为60°.
    故答案为60°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
    【解析】
    (1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
    根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
    (2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
    (3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    通过证明△BNP≌△PMQ求解即可.
    【详解】
    (1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
    设原抛物线的顶点为D,
    ∵点B(3,0),点C(0,3).
    易得BC的解析式为:y=﹣x+3,
    当x=1时,y=2,
    如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
    h=3﹣1=2,
    当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
    h=3+1=4,
    ∴h的取值范围是2≤h≤4;
    (3)设P(m,﹣m2+2m+3),
    如图2,△PQB是等腰直角三角形,且PQ=PB,
    过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    易得△BNP≌△PMQ,
    ∴BN=PM,
    即﹣m2+2m+3=m+3,
    解得:m1=0(图3)或m2=1,
    ∴P(1,4)或(0,3).
    【点睛】
    本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
    20、(1)证明见解析;(2)阴影部分的面积为.
    【解析】
    (1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.
    【详解】
    解:(1)连接OC, ∵OA=OC, ∴∠OAC=∠OCA,
    ∵AC平分∠BAE, ∴∠OAC=∠CAE,
    ∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,
    ∵AE⊥DE, ∴∠E=90°, ∴∠OCD=90°, ∴OC⊥CD,
    ∵点C在圆O上,OC为圆O的半径, ∴CD是圆O的切线;
    (2)在Rt△AED中, ∵∠D=30°,AE=6, ∴AD=2AE=12,
    在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,
    ∴DB=OB=OC=AD=4,DO=8,
    ∴CD=
    ∴S△OCD==8, ∵∠D=30°,∠OCD=90°,
    ∴∠DOC=60°, ∴S扇形OBC=×π×OC2=,
    ∵S阴影=S△COD﹣S扇形OBC ∴S阴影=8﹣,
    ∴阴影部分的面积为8﹣.

    21、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
    【解析】
    (1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
    (2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
    (3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
    【详解】
    (1)设抛物线解析式为,
    当时,,
    点的坐标为,
    将点坐标代入解析式得,
    解得:,
    抛物线的函数表达式为;
    (2)由抛物线的对称性得,

    当时,,
    矩形的周长




    当时,矩形的周长有最大值,最大值为;
    (3)如图,

    当时,点、、、的坐标分别为、、、,
    矩形对角线的交点的坐标为,
    直线平分矩形的面积,
    点是和的中点,

    由平移知,
    是的中位线,

    所以抛物线向右平移的距离是1个单位.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
    22、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).
    【解析】
    (1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;
    (1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;
    (3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;
    (4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.
    【详解】
    解:(1)令y=0,解得或x1=3,
    ∴A(﹣1,0),B(3,0);
    将C点的横坐标x=1代入y=x1﹣1x﹣3得
    ∴C(1,-3),
    ∴直线AC的函数解析式是
    (1)设P点的横坐标为x(﹣1≤x≤1),
    则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),
    ∵P点在E点的上方,
    ∴当时,PE的最大值
    △ACE的面积最大值
    (3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),
    连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,
    最小值
    求得M(1,﹣1),
    (4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,

    于是可得F1(1,0),F1(﹣3,0),
    如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,

    再根据|HA|=|CF|,
    求出
    综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.
    【点睛】
    属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.
    23、17.3米.
    【解析】
    分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.
    详解:过点C作于D,



    ∴米,
    在中,



    ∴米,
    ∴米.
    答:这条河的宽是米.
    点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
    24、(1)①150;②作图见解析;③13.3%;(2).
    【解析】
    (1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;
    (2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率.
    【详解】
    ①小明统计的评价一共有:(40+20)÷(1-60%=150(个);
    ②“好评”一共有150×60%=90(个),补全条形图如图1:

    ③图2中“差评”所占的百分比是:×100%=13.3%;
    (2)列表如下:





    好,好
    好,中
    好,差

    中,好
    中,中
    中,差

    差,好
    差,中
    差,差
    由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
    ∴两人中至少有一个给“好评”的概率是.
    考点:扇形统计图;条形统计图;列表法与树状图法.
    25、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    26、证明见解析
    【解析】
    试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.
    试题解析:∵AF=DC,
    ∴AF﹣CF=DC﹣CF,即AC=DF;
    在△ABC和△DEF中
    ∴△ABC≌△DEF(SSS)
    27、(1);(2)
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选中的恰好是正确答案A的概率为;
    (2)画树状图:

    共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
    所以选中的恰好是正确答案A,B的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.

    相关试卷

    江苏省盐城初级中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份江苏省盐城初级中学2021-2022学年中考数学对点突破模拟试卷含解析,共24页。

    江苏省海安县白甸镇初级中学2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省海安县白甸镇初级中学2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了实数 的相反数是,定义等内容,欢迎下载使用。

    2021-2022学年江苏省无锡市玉祁初级中学中考数学全真模拟试题含解析: 这是一份2021-2022学年江苏省无锡市玉祁初级中学中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的绝对值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map