江苏省盐城市大丰区沈灶中学2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
2.对于一组统计数据1,1,6,5,1.下列说法错误的是( )
A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
3.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )
A.9 cm B.12 cm C.9 cm或12 cm D.14 cm
4.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( )
A.35.578×103 B.3.5578×104
C.3.5578×105 D.0.35578×105
5.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4
6. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
7.在,,,这四个数中,比小的数有( )个.
A. B. C. D.
8.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )
A. B.
C. +4=9 D.
9. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A.23 B.75 C.77 D.139
11.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )
A. B.1 C. D.
12.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是( )
A.10m B.20m C.30m D.40m
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是___.(结果保留π)
14.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)
15.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
16.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.
17.函数y=的自变量x的取值范围是_____.
18.分解因式:2x2﹣8xy+8y2= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
20.(6分)已知抛物线,与轴交于两点,与轴交于点,且抛物线的对称轴为直线.
(1)抛物线的表达式;
(2)若抛物线与抛物线关于直线对称,抛物线与轴交于点两点(点在点左侧),要使,求所有满足条件的抛物线的表达式.
21.(6分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
22.(8分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).
参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.
23.(8分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
24.(10分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
25.(10分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
26.(12分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.
27.(12分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
2、D
【解析】
根据中位数、众数、方差等的概念计算即可得解.
【详解】
A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
B、由平均数公式求得这组数据的平均数为4,故此选项正确;
C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
故选D.
考点:1.众数;2.平均数;1.方差;4.中位数.
3、B
【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.
4、B
【解析】
科学计数法是a×,且,n为原数的整数位数减一.
【详解】
解:35578= 3.5578×,
故选B.
【点睛】
本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.
5、D
【解析】
试题分析:A.∵∠1=∠3,∴a∥b,故A正确;
B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;
C. ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;
D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.
故选D.
考点:平行线的判定.
6、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【解析】
比较这些负数的绝对值,绝对值大的反而小.
【详解】
在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
【点睛】
本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
8、A
【解析】
根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
【详解】
∵轮船在静水中的速度为x千米/时,
∴顺流航行时间为:,逆流航行时间为:,
∴可得出方程:,
故选:A.
【点睛】
本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
567000=5.67×105,
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
【详解】
∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
故选B.
【点睛】
本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
11、B
【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.
【详解】
如图,连接BC,
由网格可得AB=BC=,AC=,即AB2+BC2=AC2,
∴△ABC为等腰直角三角形,
∴∠BAC=45°,
则tan∠BAC=1,
故选B.
【点睛】
本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.
12、B
【解析】
利用配方法求二次函数最值的方法解答即可.
【详解】
∵s=20t-5t2=-5(t-2)2+20,
∴汽车刹车后到停下来前进了20m.
故选B.
【点睛】
此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、8π
【解析】
根据圆锥的侧面积=底面周长×母线长÷2公式即可求出.
【详解】
∵圆锥体的底面半径为2,
∴底面周长为2πr=4π,
∴圆锥的侧面积=4π×4÷2=8π.
故答案为:8π.
【点睛】
灵活运用圆的周长公式和扇形面积公式.
14、①②④
【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
【详解】
解:①连接OQ,OD,如图1.
易证四边形DOBP是平行四边形,从而可得DO∥BP.
结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
则有DQ=DA=1.
故①正确;
②连接AQ,如图4.
则有CP=,BP=.
易证Rt△AQB∽Rt△BCP,
运用相似三角形的性质可求得BQ=,
则PQ=,
∴.
故②正确;
③过点Q作QH⊥DC于H,如图4.
易证△PHQ∽△PCB,
运用相似三角形的性质可求得QH=,
∴S△DPQ=DP•QH=××=.
故③错误;
④过点Q作QN⊥AD于N,如图3.
易得DP∥NQ∥AB,
根据平行线分线段成比例可得,
则有,
解得:DN=.
由DQ=1,得cos∠ADQ=.
故④正确.
综上所述:正确结论是①②④.
故答案为:①②④.
【点睛】
本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
15、35°
【解析】
分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
详解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°-∠3=60°-25°=35°.
故答案为35°.
点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
16、80°.
【解析】
如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
【详解】
如图,
∵m∥n,
∴∠1=∠3,
∵∠1=100°,
∴∠3=100°,
∴∠2=180°﹣100°=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
17、x≠﹣1
【解析】
根据分母不等于2列式计算即可得解.
【详解】
解:根据题意得x+1≠2,
解得x≠﹣1.
故答案为:x≠﹣1.
【点睛】
考查的知识点为:分式有意义,分母不为2.
18、1(x﹣1y)1
【解析】
试题分析:1x1﹣8xy+8y1
=1(x1﹣4xy+4y1)
=1(x﹣1y)1.
故答案为:1(x﹣1y)1.
考点:提公因式法与公式法的综合运用
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
20、(1);(2).
【解析】
(1)根据待定系数法即可求解;
(2)根据题意知,根据三角形面积公式列方程即可求解.
【详解】
(1)根据题意得:,
解得:,
抛物线的表达式为:;
(2)∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线
∴抛物线的对称轴为直线,
∵抛物线与轴交于点两点且点在点左侧,
∴的横坐标为:
∴,
令,则,
解得:,
令,则,
∴点的坐标分别为,,点的坐标为,
∴,
∵,
∴,即,
解得:或,
∵抛物线与抛物线关于直线对称,抛物线的对称轴为直线,
∴抛物线的表达式为或.
【点睛】
本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线的对称轴为直线.
21、
【解析】
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
【详解】
解:设灯柱的长为米,过点作于点过点做于点
∴四边形为矩形,
∵∴
又∵∴
在中,
∴
∴又∴
在中,
解得,(米)
∴灯柱的高为米.
22、建筑物AB的高度约为30.3m.
【解析】
分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.
详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.
过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.
在Rt△ADE中,tan∠ADE=,
∴AE=DE•tan30°=.
在Rt△DEB中,tan∠BDE=,
∴BE=DE•tan10°=2×0.18=7.2,
∴AB=AE+BE=23.09+7.2=30.29≈30.3.
答:建筑物AB的高度约为30.3m.
点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.
23、证明见解析.
【解析】
试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
考点:1.全等三角形的判定与性质;2.平行四边形的性质.
24、(1)30°;(2)20°;
【解析】
(1)利用圆切线的性质求解;
(2) 连接OQ,利用圆的切线性质及角之间的关系求解。
【详解】
(1)如图①中,连接OQ.
∵EQ是切线,
∴OQ⊥EQ,
∴∠OQE=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠AQB=∠AOB=45°,
∵OB=OQ,
∴∠OBQ=∠OQB=15°,
∴∠AQE=90°﹣15°﹣45°=30°.
(2)如图②中,连接OQ.
∵OB=OQ,
∴∠B=∠OQB=65°,
∴∠BOQ=50°,
∵∠AOB=90°,
∴∠AOQ=40°,
∵OQ=OA,
∴∠OQA=∠OAQ=70°,
∵EQ是切线,
∴∠OQE=90°,
∴∠AQE=90°﹣70°=20°.
【点睛】
此题主要考查圆的切线的性质及圆中集合问题的综合运等.
25、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
【解析】
(1)根据题意应用分式方程即可;
(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
【详解】
(1)设型丝绸的进价为元,则型丝绸的进价为元,
根据题意得:,
解得,
经检验,为原方程的解,
,
答:一件型、型丝绸的进价分别为500元,400元.
(2)①根据题意得:
,
的取值范围为:,
②设销售这批丝绸的利润为,
根据题意得:
,
,
(Ⅰ)当时,,
时,
销售这批丝绸的最大利润;
(Ⅱ)当时,,
销售这批丝绸的最大利润;
(Ⅲ)当时,
当时,
销售这批丝绸的最大利润.
综上所述:.
【点睛】
本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
26、(1)45°;(2)26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
27、 (1)证明见解析;(2) △APQ是等边三角形.
【解析】
(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
【详解】
证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
(2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
∴△APQ是等边三角形.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析,共25页。试卷主要包含了计算3a2-a2的结果是,下列方程中,没有实数根的是等内容,欢迎下载使用。
2022年江苏省盐城市大丰区沈灶中学中考数学考前最后一卷含解析: 这是一份2022年江苏省盐城市大丰区沈灶中学中考数学考前最后一卷含解析,共21页。试卷主要包含了的整数部分是,二次函数y=ax1+bx+c,方程的解为等内容,欢迎下载使用。
2021-2022学年江苏省盐城市大丰区沈灶中学中考数学全真模拟试题含解析: 这是一份2021-2022学年江苏省盐城市大丰区沈灶中学中考数学全真模拟试题含解析,共23页。试卷主要包含了下列各运算中,计算正确的是,估计的值在,分式有意义,则x的取值范围是等内容,欢迎下载使用。