江苏省宜兴市丁蜀区渎边联盟重点名校2021-2022学年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是( )
A.50π﹣48 B.25π﹣48 C.50π﹣24 D.
2.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是( )
A.60° B.45° C.35° D.30°
3.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
4.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是( )
A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
5.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
6.一、单选题
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
7.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
8.下列计算正确的是( )
A.2x﹣x=1 B.x2•x3=x6
C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
9.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个 B.3个 C.2个 D.1个
10.下列各组数中,互为相反数的是( )
A.﹣2 与2 B.2与2 C.3与 D.3与3-
二、填空题(共7小题,每小题3分,满分21分)
11.已知⊙O半径为1,A、B在⊙O上,且,则AB所对的圆周角为__o.
12.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
13.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.
14.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).
15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
16.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
17.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
年龄组x
7
8
9
10
11
12
13
14
15
16
17
男生平均身高y
115.2
118.3
122.2
126.5
129.6
135.6
140.4
146.1
154.8
162.9
168.2
(1)该市男学生的平均身高从 岁开始增加特别迅速.
(2)求直线AB所对应的函数表达式.
(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?
19.(5分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
(2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
20.(8分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)
21.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=,求DG的长,
22.(10分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.
请你根据图中信息,回答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
23.(12分)已知关于的方程有两个实数根.求的取值范围;若,求的值;
24.(14分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
设以AB、AC为直径作半圆交BC于D点,连AD,如图,
∴AD⊥BC,
∴BD=DC=BC=8,
而AB=AC=10,CB=16,
∴AD===6,
∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,
=π•52﹣•16•6,
=25π﹣1.
故选B.
2、A
【解析】
试题解析:连接OD,
∵四边形ABCO为平行四边形,
∴∠B=∠AOC,
∵点A. B. C.D在⊙O上,
由圆周角定理得,
解得,
∵OA=OD,OD=OC,
∴∠DAO=∠ODA,∠ODC=∠DCO,
故选A.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
3、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
4、A
【解析】
分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
综上即可得出结论.
详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
∴x1≠x2,结论A正确;
B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1+x2=a,
∵a的值不确定,
∴B结论不一定正确;
C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1•x2=﹣2,结论C错误;
D、∵x1•x2=﹣2,
∴x1<0,x2>0,结论D错误.
故选A.
点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
5、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
7、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
8、D
【解析】
根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
【详解】
解:A、2x-x=x,错误;
B、x2•x3=x5,错误;
C、(m-n)2=m2-2mn+n2,错误;
D、(-xy3)2=x2y6,正确;
故选D.
【点睛】
考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
9、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0
详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
把x=−2代入得:4a−2b+c=0,∴①正确;
把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
∵(−2,0)、(x1,0),且1
∴不等式的两边都乘以a(a<0)得:c>−2a,
∴2a+c>0,∴③正确;
④由4a−2b+c=0得
而0
∴2a−b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
10、A
【解析】
根据只有符号不同的两数互为相反数,可直接判断.
【详解】
-2与2互为相反数,故正确;
2与2相等,符号相同,故不是相反数;
3与互为倒数,故不正确;
3与3相同,故不是相反数.
故选:A.
【点睛】
此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.
二、填空题(共7小题,每小题3分,满分21分)
11、45º或135º
【解析】
试题解析:如图所示,
∵OC⊥AB,
∴C为AB的中点,即
在Rt△AOC中,OA=1,
根据勾股定理得:即OC=AC,
∴△AOC为等腰直角三角形,
同理
∵∠AOB与∠ADB都对,
∵大角
则弦AB所对的圆周角为或
故答案为或
12、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
13、
【解析】
设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.
【详解】
解:设降价的百分率为x,根据题意列方程得:
100×(1−x)2=81
解得x1=0.1,x2=1.9(不符合题意,舍去).
所以降价的百分率为0.1,即10%.
故答案为:10%.
【点睛】
本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.
14、③
【解析】
根据直线与点的位置关系即可求解.
【详解】
①点A在直线BC上是错误的;
②直线AB经过点C是错误的;
③直线AB,BC,CA两两相交是正确的;
④点B是直线AB,BC,CA的公共点是错误的.
故答案为③.
【点睛】
本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.
15、
【解析】
解:根据题意可得:列表如下
红1
红2
黄1
黄2
黄3
红1
红1,红2
红1,黄1
红1,黄2
红1,黄3
红2
红2,红1
红2,黄1
红2,黄2
红2,黄3
黄1
黄1,红1
黄1,红2
黄1,黄2
黄1,黄3
黄2
黄2,红1
黄2,红2
黄2,黄1
黄2,黄3
黄3
黄3,红1
黄3,红2
黄3,黄1
黄3,黄2
共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
故摸出两个颜色相同的小球的概率为.
【点睛】
本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
16、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
17、(1,)或(﹣1,)
【解析】
设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
【详解】
解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
∵⊙M的半径为1,
∴x=1或x=−1,
当x=1时,y=,
当x=−1时,y=.
∴P点坐标为:(1, )或(−1, ).
故答案为(1, )或(−1, ).
【点睛】
本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
三、解答题(共7小题,满分69分)
18、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.
【解析】
(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.
【详解】
解:(1)由统计图可得,
该市男学生的平均身高从 11 岁开始增加特别迅速,
故答案为:11;
(2)设直线AB所对应的函数表达式
∵图象经过点
则,
解得.
即直线AB所对应的函数表达式:
(3)设直线CD所对应的函数表达式为:,
,得,
即直线CD所对应的函数表达式为:
把代入得
即该市18岁男生年龄组的平均身高大约是174cm左右.
【点睛】
此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.
19、 (1)3;(2) x﹣y,1.
【解析】
(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
=3×+2-+3-1-1,
=+2−+3-1-1,
=3;
(2)(x﹣)÷,
=,
=
=x-y,
当x=,y=-1时,原式=−+1=1.
【点睛】
本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
20、见解析
【解析】
根据内接正四边形的作图方法画出图,保留作图痕迹即可.
【详解】
任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.
【点睛】
此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.
21、 (1)证明见解析;(2)AD=;(3)DG=.
【解析】
(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;
(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;
(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.
【详解】
(1)如图,连接OD,
∵AD为∠BAC的角平分线,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∴BC为圆O的切线;
(2)连接DF,由(1)知BC为圆O的切线,
∴∠FDC=∠DAF,
∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,
∴,即AD2=AB•AF=xy,
则AD= ;
(3)连接EF,在Rt△BOD中,sinB=,
设圆的半径为r,可得,
解得:r=5,
∴AE=10,AB=18,
∵AE是直径,
∴∠AFE=∠C=90°,
∴EF∥BC,
∴∠AEF=∠B,
∴sin∠AEF=,
∴AF=AE•sin∠AEF=10×=,
∵AF∥OD,
∴,即DG=AD,
∴AD=,
则DG=.
【点睛】
圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.
22、(1)共调查了50名学生;统计图见解析;(2)72°;(3).
【解析】
(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;
(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;
(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.
【详解】
解:(1)14÷28%=50,
∴本次共调查了50名学生.
补全条形统计图如下.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.
(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.
共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,
∴抽取的2名学生恰好来自同一个班级的概率P==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
23、(1);(2)k=-3
【解析】
(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1;②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
【详解】
解:(1)依题意得△≥0,即[-2(k-1)]2-4k2≥0
解得
(2)依题意x1+x2=2(k-1),x1·x2=k2
以下分两种情况讨论:
①当x1+x2≥0时,则有x1+x2=x1·x2-1,即2(k-1)=k2-1
解得k1=k2=1
∵
∴k1=k2=1不合题意,舍去
②当x1+x2<0时,则有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
解得k1=1,k2=-3
∵
∴k=-3
综合①、②可知k=-3
【点睛】
一元二次方程根与系数关系,根判别式.
24、(1);(2) .
【解析】
试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
试题解析:
解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
(2)树状图如下,
由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
考点:用列举法求概率.
2023-2024学年江苏省宜兴市丁蜀区渎边联盟数学九年级第一学期期末经典试题含答案: 这是一份2023-2024学年江苏省宜兴市丁蜀区渎边联盟数学九年级第一学期期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年江苏省宜兴市丁蜀区渎边联盟数学八上期末达标测试试题含答案: 这是一份2023-2024学年江苏省宜兴市丁蜀区渎边联盟数学八上期末达标测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若方程组的解中,则等于,下列说法等内容,欢迎下载使用。
江苏省宜兴市丁蜀区渎边联盟2022-2023学年数学七年级第二学期期末经典模拟试题含答案: 这是一份江苏省宜兴市丁蜀区渎边联盟2022-2023学年数学七年级第二学期期末经典模拟试题含答案,共7页。试卷主要包含了 “绿水青山就是金山银山”等内容,欢迎下载使用。