江苏省宜兴市宜城环科园教联盟达标名校2021-2022学年中考数学押题试卷含解析
展开这是一份江苏省宜兴市宜城环科园教联盟达标名校2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了若分式的值为零,则x的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
2.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A. B. C. D.
3.已知xa=2,xb=3,则x3a﹣2b等于( )
A. B.﹣1 C.17 D.72
4.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出 m 的值是( )
A.5 B.10 C.15 D.20
5.要使分式有意义,则x的取值范围是( )
A.x= B.x> C.x< D.x≠
6.若分式的值为零,则x的值是( )
A.1 B. C. D.2
7.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
A. B. C. D.
8.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )
A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
9.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
10.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:
下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
A.① B.② C.①③ D.②③
二、填空题(共7小题,每小题3分,满分21分)
11.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
12.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
13.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.
14.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.
15.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.
16.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
17.﹣|﹣1|=______.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
19.(5分)小马虎做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚.小马虎看答案以后知道,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式正确求出,老师又给出了一个多项式,要求小马虎求出的结果.小马虎在求解时,误把“”看成“”,结果求出的答案为.请你替小马虎求出“”的正确答案.
20.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
21.(10分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
(1)求证:BE=CE
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
①求证:△BEM≌△CEN;
②若AB=2,求△BMN面积的最大值;
③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
22.(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:
“祖冲之奖”的学生成绩统计表:
分数/分
80
85
90
95
人数/人
4
2
10
4
根据图表中的信息,解答下列问题:
(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
23.(12分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
24.(14分)解不等式,并把解集在数轴上表示出来.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
2、C
【解析】
试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
考点:用科学计数法计数
3、A
【解析】
∵xa=2,xb=3,
∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
故选A.
4、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
5、D
【解析】
本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
【详解】
∵3x−7≠0,
∴x≠.
故选D.
【点睛】
本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
6、A
【解析】
试题解析:∵分式的值为零,
∴|x|﹣1=0,x+1≠0,
解得:x=1.
故选A.
7、C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
8、B
【解析】
试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
故选B.
考点:二次函数的图象.106144
9、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
10、B
【解析】
根据图形和各个小题的说法可以判断是否正确,从而解答本题
【详解】
当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
故选:B.
【点睛】
此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
二、填空题(共7小题,每小题3分,满分21分)
11、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
12、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
13、
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
【详解】
设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
在Rt△ABF中,由勾股定理得:
AF2=52-32=16,
∴AF=4,DF=5-4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2,
即x2=(3-x)2+12,
解得:x=,
故答案为.
14、4
【解析】
由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.
【详解】
解:如图,设AC与BD的交点为O,连接PO,
∵四边形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案为4
【点睛】
本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.
15、10,,.
【解析】
解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
故答案为10,,.
16、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
17、2
【解析】
原式利用立方根定义,以及绝对值的代数意义计算即可求出值.
【详解】
解:原式=3﹣1=2,
故答案为:2
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
三、解答题(共7小题,满分69分)
18、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
【解析】
(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
(2)根据图形得出点的坐标;
(3)根据弧长的计算公式求出答案.
【详解】
解:(1)△A1B1C如图所示.
(2)A1(0,6).
(3)
.
【点睛】
本题考查了旋转作图和弧长的计算.
19、(1)-3; (2)“A-C”的正确答案为-7x2-2x+2.
【解析】
(1)根据整式加减法则可求出二次项系数;
(2)表示出多项式,然后根据的结果求出多项式,计算即可求出答案.
【详解】
(1)由题意得,, A+2B=(4+)+2-8, 4+=1,=-3,即系数为-3.
(2)A+C=,且A=,C=4,AC=
【点睛】
本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.
20、(1),;(2)P,.
【解析】
试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y=,
得:3=k,
∴反比例函数的表达式y=,
联立两个函数关系式成方程组得:,
解得:,或,
∴点B的坐标为(3,1).
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,- 1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得:,
解得:,
∴直线AD的解析式为y=-2x+1.
令y=-2x+1中y=0,则-2x+1=0,
解得:x=,
∴点P的坐标为(,0).
S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
21、(1)详见解析;(1)①详见解析;②1;③.
【解析】
(1)只要证明△BAE≌△CDE即可;
(1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
②构建二次函数,利用二次函数的性质即可解决问题;
③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵E是AD中点,
∴AE=DE,
∴△BAE≌△CDE,
∴BE=CE.
(1)①解:如图1中,
由(1)可知,△EBC是等腰直角三角形,
∴∠EBC=∠ECB=45°,
∵∠ABC=∠BCD=90°,
∴∠EBM=∠ECN=45°,
∵∠MEN=∠BEC=90°,
∴∠BEM=∠CEN,
∵EB=EC,
∴△BEM≌△CEN;
②∵△BEM≌△CEN,
∴BM=CN,设BM=CN=x,则BN=4-x,
∴S△BMN=•x(4-x)=-(x-1)1+1,
∵-<0,
∴x=1时,△BMN的面积最大,最大值为1.
③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.
∴EG=m+m=(1+)m,
∵S△BEG=•EG•BN=•BG•EH,
∴EH==m,
在Rt△EBH中,sin∠EBH=.
【点睛】
本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
22、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
【解析】
(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
(2)根据中位数和众数的定义求解可得;
(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
【详解】
(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:
故答案为40;
(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
故答案为90、90;
(3)列表法:
∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
【点睛】
本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
23、x=15,y=1
【解析】
根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
【详解】
依题意得,
,
化简得,,
解得, .,
检验当x=15,y=1时,,,
∴x=15,y=1是原方程的解,经检验,符合题意.
答:x=15,y=1.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
24、见解析
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.
【详解】
解:去分母,得 3x+1-6>4x-2,
移项,得:3x-4x>-2+5,
合并同类项,得-x>3,
系数化为1,得 x<-3,
不等式的解集在数轴上表示如下:
【点睛】
此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.
相关试卷
这是一份江苏省宜兴市宜城环科园教联盟2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份江苏省宜兴市宜城环科园教联盟2023-2024学年八年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了下列命题,是真命题的是等内容,欢迎下载使用。
这是一份江苏省宜兴市宜城环科园教联盟2022-2023学年数学七下期末学业质量监测试题含答案,共8页。试卷主要包含了有下列说法,下列事件为必然事件的是,某校九年级,使等式成立的x的值是等内容,欢迎下载使用。