江西南昌石埠中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
2.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
3.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
4.﹣23的相反数是( )
A.﹣8 B.8 C.﹣6 D.6
5.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
6.的倒数是( )
A. B. C. D.
7.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
8.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
9.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范围在数轴上表示正确的是( )
A. B.
C. D.
10.一、单选题
如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.
12.三角形的每条边的长都是方程的根,则三角形的周长是 .
13.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
14.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.
16.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.
17.分解因式:x2y﹣4xy+4y=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
19.(5分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
分组
频数
频率
0.5~50.5
0.1
50.5~
20
0.2
100.5~150.5
200.5
30
0.3
200.5~250.5
10
0.1
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
20.(8分)计算.
21.(10分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.
22.(10分)已知:如图,在四边形ABCD中,AD∥BC,点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.
(1)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.
23.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE交AC于点E,交AB延长线于点F.
(1)求证:BD=CD;
(2)求证:DC2=CE•AC;
(3)当AC=5,BC=6时,求DF的长.
24.(14分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
2、D
【解析】
分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
平均数为(12+5+9+5+14)÷5=9,故选项A正确;
重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
5出现了2次,最多,∴众数是5,故选项C正确;
极差为:14﹣5=9,故选项D错误.
故选D
3、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
4、B
【解析】
∵=﹣8,﹣8的相反数是8,∴的相反数是8,
故选B.
5、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
6、C
【解析】
由互为倒数的两数之积为1,即可求解.
【详解】
∵,∴的倒数是.
故选C
7、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
8、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
9、C
【解析】
由一元二次方程有实数根可知△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
∵关于x的一元二次方程x2−2x+k+2=0有实数根,
∴△=(−2)2−4(k+2)⩾0,
解得:k⩽−1,
在数轴上表示为:
故选C.
【点睛】
本题考查了一元二次方程根的判别式.根据一元二次方程根的情况利用根的判别式列出不等式是解题的关键.
10、D
【解析】
试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.
考点:简单几何体的三视图.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
【详解】
解:如图,设AH=x,GB=y,
∵EH∥BC,
,
∵FG∥AC,
,
由①②可得x=,y=2,
∴AC=,BC=7,
∴S△ABC=,
故答案为.
【点睛】
本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
12、6或2或12
【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
【详解】
由方程,得=2或1.
当三角形的三边是2,2,2时,则周长是6;
当三角形的三边是1,1,1时,则周长是12;
当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
综上所述此三角形的周长是6或12或2.
13、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
14、①③④
【解析】
分析:根据两个向量垂直的判定方法一一判断即可;
详解:①∵2×(−1)+1×2=0,
∴与垂直;
②∵
∴与不垂直.
③∵
∴与垂直.
④∵
∴与垂直.
故答案为:①③④.
点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
15、3﹣或1
【解析】
分两种情况:情况一:如图一所示,当∠A'DE=90°时;
情况二:如图二所示,当∠A'ED=90°时.
【详解】
解:如图,当∠A'DE=90°时,△A'ED为直角三角形,
∵∠A'=∠A=30°,
∴∠A'ED=60°=∠BEC=∠B,
∴△BEC是等边三角形,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=1,
设AD=A'D=x,则DE=1﹣x,
∵Rt△A'DE中,A'D=DE,
∴x=(1﹣x),
解得x=3﹣,
即AD的长为3﹣;
如图,当∠A'ED=90°时,△A'ED为直角三角形,
此时∠BEC=90°,∠B=60°,
∴∠BCE=30°,
∴BE=BC=1,
又∵Rt△ABC中,AB=1BC=4,
∴AE=4﹣1=3,
∴DE=3﹣x,
设AD=A'D=x,则
Rt△A'DE中,A'D=1DE,即x=1(3﹣x),
解得x=1,
即AD的长为1;
综上所述,即AD的长为3﹣或1.
故答案为3﹣或1.
【点睛】
本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.
16、2
【解析】
分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
详解:∵点G是△ABC重心,BC=6,
∴CD=BC=3,AG:AD=2:3,
∵GE∥BC,
∴△AEG∽△ADC,
∴GE:CD=AG:AD=2:3,
∴GE=2.
故答案为2.
点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
17、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
三、解答题(共7小题,满分69分)
18、 (1)见解析;(2) .
【解析】
(1)连接OD,根据切线的判定方法即可求出答案;
(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
【详解】
(1)连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=∠B=60°,
∵OD=OB,
∴△ODB是等边三角形,
∴∠ODB=60°
∴∠ODB=∠C,
∴OD∥AC,
∴DE⊥AC
∴OD⊥DE,
∴DE是⊙O的切线
(2)∵OD∥AC,点O是AB的中点,
∴OD为△ABC的中位线,
∴BD=CD=2
在Rt△CDE中,
∠C=60°,
∴∠CDE=30°,
∴CE=CD=1
∴AE=AC﹣CE=4﹣1=3
在Rt△AEF中,
∠A=60°,
∴EF=AE•sinA=3×sin60°=
【点睛】
本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
19、⑴表格中依次填10,100.5,25,0.25,150.5,1;
⑵0.25,100;
⑶1000×(0.3+0.1+0.05)=450(名).
【解析】
(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
【详解】
解:填表如下:
(2)长方形ABCD的面积为0.25,样本容量是100;
提出这项建议的人数人.
【点睛】
本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
20、
【解析】
分析:先计算,再做除法,结果化为整式或最简分式.
详解:
.
点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.
21、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
【解析】
(1)将点A的坐标代入解析式求解可得;
(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
【详解】
(1)将点A(4,3)代入y=,得:k=12,
则反比例函数解析式为y=;
(2)如图,过点A作AC⊥x轴于点C,
则OC=4、AC=3,
∴OA==1,
∵AB∥x轴,且AB=OA=1,
∴点B的坐标为(9,3);
(3)∵点B坐标为(9,3),
∴OB所在直线解析式为y=x,
由可得点P坐标为(6,2),(负值舍去),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(6,3),
∴AE=2、PE=1、PD=2,
则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
【点睛】
本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
22、(1)作图见解析;(2)⊙O的半径为.
【解析】
(1)作出相应的图形,如图所示;
(2)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.
【详解】
解:(1)作出相应的图形,如图所示(去掉线段BF即为所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE与BE分别为∠DAB与∠CBA的平分线,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB为⊙O的直径,点F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半径为.
【点睛】
此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.
23、(1)详见解析;(2)详见解析;(3)DF=.
【解析】
(1)先判断出AD⊥BC,即可得出结论;
(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;
(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论.
【详解】
(1)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD;
(2)连接OD,
∵DE是⊙O的切线,
∴∠ODE=90°,
由(1)知,BD=CD,
∵OA=OB,
∴OD∥AC,
∴∠CED=∠ODE=90°=∠ADC,
∵∠C=∠C,
∴△CDE∽△CAD,
∴,
∴CD2=CE•AC;
(3)∵AB=AC=5,
由(1)知,∠ADB=90°,OA=OB,
∴OD=AB=,
由(1)知,CD=BC=3,
由(2)知,CD2=CE•AC,
∵AC=5,
∴CE=,
∴AE=AC-CE=5-=,
在Rt△CDE中,根据勾股定理得,DE=,
由(2)知,OD∥AC,
∴,
∴,
∴DF=.
【点睛】
此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.
24、(1)20;(2)作图见试题解析;(3).
【解析】
(1)由A类的学生数以及所占的百分比即可求得答案;
(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
【详解】
(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
故答案为20;
(2)∵C类女生:20×25%﹣2=3(名);
D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
如图:
(3)列表如下:A类中的两名男生分别记为A1和A2,
男A1
男A2
女A
男D
男A1男D
男A2男D
女A男D
女D
男A1女D
男A2女D
女A女D
共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年江西省南昌石埠中学数学九上期末学业质量监测模拟试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年江西省南昌石埠中学数学八上期末预测试题含答案: 这是一份2023-2024学年江西省南昌石埠中学数学八上期末预测试题含答案,共7页。试卷主要包含了下列多项式,下列各式没有意义的是,若方程无解,则的值为等内容,欢迎下载使用。
江西省南昌石埠中学2022-2023学年七下数学期末调研模拟试题含答案: 这是一份江西省南昌石埠中学2022-2023学年七下数学期末调研模拟试题含答案,共7页。试卷主要包含了下列点在直线y=-x+1上的是等内容,欢迎下载使用。