江西省吉安市吉水外国语校2021-2022学年中考数学模拟预测试卷含解析
展开这是一份江西省吉安市吉水外国语校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在△ABC中,AB=AC=13,BC=24,则tanB等于( )
A. B. C. D.
2.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A.23 B.75 C.77 D.139
3.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
A.1+ B.1+
C.2sin20°+ D.
4.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=( )
A. B. C.12 D.24
5.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
步数(万步)
1.0
1.2
1.1
1.4
1.3
天数
3
3
5
7
12
在每天所走的步数这组数据中,众数和中位数分别是( )
A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4
6.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=( )
A.1 B. C. D.
7.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A.向左平移1个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移1个单位
8.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是( )
A.①②③④ B.②④ C.①②③ D.①③④
9.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).
A.1 B.2 C.3 D.4
10.下列各数中是无理数的是( )
A.cos60° B. C.半径为1cm的圆周长 D.
二、填空题(共7小题,每小题3分,满分21分)
11.函数的定义域是__________.
12.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=_____.
13.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)
14.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.
15.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.
16.若分式的值为正,则实数的取值范围是__________________.
17.分式有意义时,x的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.
19.(5分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.
(1)当点C(0,3)时,
①求这条抛物线的表达式和顶点坐标;
②求证:∠DCE=∠BCE;
(2)当CB平分∠DCO时,求m的值.
20.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.
21.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.
22.(10分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.
23.(12分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
24.(14分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
(1)求被覆盖的这个数是多少?
(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
如图,等腰△ABC中,AB=AC=13,BC=24,
过A作AD⊥BC于D,则BD=12,
在Rt△ABD中,AB=13,BD=12,则,
AD=,
故tanB=.
故选B.
【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.
2、B
【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.
【详解】
∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.
∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.
故选B.
【点睛】
本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.
3、A
【解析】
连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
【详解】
连接OT、OC,
∵PT切⊙O于点T,
∴∠OTP=90°,
∵∠P=20°,
∴∠POT=70°,
∵M是OP的中点,
∴TM=OM=PM,
∴∠MTO=∠POT=70°,
∵OT=OC,
∴∠MTO=∠OCT=70°,
∴∠OCT=180°-2×70°=40°,
∴∠COM=30°,
作CH⊥AP,垂足为H,则CH=OC=1,
S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
故选A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
4、A
【解析】
解:如图,设对角线相交于点O,
∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,
由勾股定理的,AB===5,
∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,
即5DH=×8×6,解得DH=.
故选A.
【点睛】
本题考查菱形的性质.
5、B
【解析】
在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
【详解】
在这组数据中出现次数最多的是1.1,即众数是1.1.
要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
故选B.
【点睛】
本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
6、D
【解析】
解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.
点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.
7、D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
8、A
【解析】
分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;
详解:∵∠DAE=∠BAC=90°,
∴∠DAB=∠EAC
∵AD=AE,AB=AC,
∴△DAB≌△EAC,
∴BD=CE,∠ABD=∠ECA,故①正确,
∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,
∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,
∴∠CEB=90°,即CE⊥BD,故③正确,
∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,
故选A.
点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
9、C
【解析】
∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°-∠AOG=90°-30°=60°,
∴△OGE是等边三角形,故(3)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO=,
∵O为AC中点,
∴AC=2AO=2,
∴BC=AC=,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(1)正确;
∵OG=a,BC=,
∴OG≠BC,故(2)错误;
∵S△AOE=a•=,
SABCD=3a•=32,
∴S△AOE=SABCD,故(4)正确;
综上所述,结论正确是(1)(3)(4)共3个,
故选C.
【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
10、C
【解析】
分析:根据“无理数”的定义进行判断即可.
详解:
A选项中,因为,所以A选项中的数是有理数,不能选A;
B选项中,因为是无限循环小数,属于有理数,所以不能选B;
C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
D选项中,因为,2是有理数,所以不能选D.
故选.C.
点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
【点睛】
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
12、1
【解析】
试题分析:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,
∵△ABC≌△EDB,
∴BE=AC=4,
∴AE=5﹣4=1.
考点:全等三角形的性质;勾股定理
13、15π−18.
【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.
【详解】
S阴影部分=S扇形ACE+S扇形BCD-S△ABC,
∵S扇形ACE==12π,
S扇形BCD==3π,
S△ABC=×6×6=18,
∴S阴影部分=12π+3π−18=15π−18.
故答案为15π−18.
【点睛】
本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.
14、1.
【解析】
解:∵平移后解析式是y=x﹣b,
代入y=得:x﹣b=,
即x2﹣bx=5,
y=x﹣b与x轴交点B的坐标是(b,0),
设A的坐标是(x,y),
∴OA2﹣OB2
=x2+y2﹣b2
=x2+(x﹣b)2﹣b2
=2x2﹣2xb
=2(x2﹣xb)
=2×5=1,
故答案为1.
点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
15、小林
【解析】
观察图形可知,小林的成绩波动比较大,故小林是新手.
故答案是:小林.
16、x>0
【解析】
【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
【详解】∵分式的值为正,
∴x与x2+2的符号同号,
∵x2+2>0,
∴x>0,
故答案为x>0.
【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.
17、x<1
【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.
【详解】
根据题意得:1﹣x>2,
解得:x<1.
故答案为x<1.
【点睛】
考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
三、解答题(共7小题,满分69分)
18、见解析
【解析】
根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
【详解】
解:∵CE∥DF
∴∠ECA=∠FDB,
在△ECA和△FDB中
∴△ECA≌△FDB,
∴AE=FB.
【点睛】
本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
19、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=;
【解析】
(1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,
然后把一般式配成顶点式得到D点坐标;
②如图1,先解方程﹣x2+2x+3=0得B(3,0),则可判断△OCB为等腰直角三角形得到∠
OBC=45°,再证明△CDE为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE;
(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得
到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程﹣x2+2mx+3m2=0
得B(3m,0),同时确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证
明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.
【详解】
(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),
∴抛物线解析式为y=﹣x2+2x+3;
∵
∴顶点D为(1,4);
②证明:如图1,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),
∵OC=OB,
∴△OCB为等腰直角三角形,
∴∠OBC=45°,
∵CE⊥直线x=1,
∴∠BCE=45°,
∵DE=1,CE=1,
∴△CDE为等腰直角三角形,
∴∠DCE=45°,
∴∠DCE=∠BCE;
(2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,
∴抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),
当y=0时,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,则B(3m,0),
当x=0时,y=﹣x2+2mx+3m2=3m2,则C(0,3m2),
∵GF∥OC,
∴即 解得GF=2m2,
∴DG=4m2﹣2m2=2m2,
∵CB平分∠DCO,
∴∠DCB=∠OCB,
∵∠OCB=∠DGC,
∴∠DCG=∠DGC,
∴DC=DG,
即m2+(4m2﹣3m2)2=4m4,
∴
而m>0,
∴
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.
20、作图见解析;CE=4.
【解析】
分析:利用数形结合的思想解决问题即可.
详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.
点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.
21、 (1)26°;(2)1.
【解析】
试题分析:(1)根据垂径定理,得到,再根据圆周角与圆心角的关系,得知∠E=∠O,据此即可求出∠DEB的度数;
(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.
试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,
∴,
∴∠DEB=∠AOD=×52°=26°;
(2)∵AB是⊙O的一条弦,OD⊥AB,
∴AC=BC,即AB=2AC,
在Rt△AOC中,AC===4,
则AB=2AC=1.
考点:垂径定理;勾股定理;圆周角定理.
22、见解析
【解析】
由BE=CF可得BC=EF,即可判定,再利用全等三角形的性质证明即可.
【详解】
∵BE=CF,
∴,
即BC=EF,
又∵AB=DE,∠B=∠DEF,
∴在与中,
,
∴,
∴AC=DF.
【点睛】
本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.
23、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
24、(1)2;(2)α=75°.
【解析】
(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
(2)直接利用特殊角的三角函数值计算得出答案.
【详解】
解:(1)原式=1+﹣1+﹣□+1=1,
∴□=1+﹣1++1﹣1=2;
(2)∵α为三角形一内角,
∴0°<α<180°,
∴﹣15°<(α﹣15)°<165°,
∵2tan(α﹣15)°=,
∴α﹣15°=60°,
∴α=75°.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
相关试卷
这是一份江西省吉水县外国语学校2021-2022学年中考四模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,满足不等式组的整数解是,计算等内容,欢迎下载使用。
这是一份江西省吉安市吉水外国语校2022年中考数学全真模拟试题含解析,共20页。试卷主要包含了已知,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是,我们知道等内容,欢迎下载使用。