|试卷下载
终身会员
搜索
    上传资料 赚现金
    江西省广丰县联考2021-2022学年中考数学五模试卷含解析
    立即下载
    加入资料篮
    江西省广丰县联考2021-2022学年中考数学五模试卷含解析01
    江西省广丰县联考2021-2022学年中考数学五模试卷含解析02
    江西省广丰县联考2021-2022学年中考数学五模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省广丰县联考2021-2022学年中考数学五模试卷含解析

    展开
    这是一份江西省广丰县联考2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了﹣23的相反数是,下列运算正确的是,下列命题是真命题的个数有等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

    A.O1 B.O2 C.O3 D.O4
    2.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    3.﹣23的相反数是(  )
    A.﹣8 B.8 C.﹣6 D.6
    4.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为(  )
    A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
    5.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1 A.–2 6.下列运算正确的是( )
    A.4x+5y=9xy B.(−m)3•m7=m10
    C.(x3y)5=x8y5 D.a12÷a8=a4
    7.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为(  )

    A. B. C. D.
    8.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )

    A.或 B.或 C.或 D.或
    9.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和(  )
    A.增加(n﹣2)×180° B.减小(n﹣2)×180°
    C.增加(n﹣1)×180° D.没有改变
    10.下列命题是真命题的个数有(  )
    ①菱形的对角线互相垂直;
    ②平分弦的直径垂直于弦;
    ③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
    ④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
    A.1个 B.2个 C.3个 D.4个
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.

    12.计算:(a2)2=_____.
    13.如图,△ABC是直角三角形,∠C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tan∠OCB=_____

    14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.

    15.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
    16.计算:___.
    17.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.

    三、解答题(共7小题,满分69分)
    18.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
    19.(5分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
    教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
    求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
    20.(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.

    21.(10分)问题提出
    (1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为 ;
    问题探究
    (2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P之间的最大距离;
    问题解决
    (3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.

    22.(10分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.
    求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
    23.(12分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:
    (1)∠C=   °;
    (2)此时刻船与B港口之间的距离CB的长(结果保留根号).

    24.(14分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.

    考点:平面直角坐标系.
    2、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    3、B
    【解析】
    ∵=﹣8,﹣8的相反数是8,∴的相反数是8,
    故选B.
    4、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),
    先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
    所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
    故选:A.
    【点睛】
    本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
    5、B
    【解析】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
    【详解】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
    ∵y=0时,x=-2或x=3,
    ∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
    ∵1﹣(x﹣3)(x+2)=0,
    ∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
    ∵-1<0,
    ∴两个抛物线的开口向下,
    ∴x1<﹣2<3<x2,
    故选B.
    【点睛】
    本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
    6、D
    【解析】
    各式计算得到结果,即可作出判断.
    【详解】
    解:A、4x+5y=4x+5y,错误;
    B、(-m)3•m7=-m10,错误;
    C、(x3y)5=x15y5,错误;
    D、a12÷a8=a4,正确;
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    7、A
    【解析】
    本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
    【详解】
    先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
    【点睛】
    熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.
    8、A
    【解析】
    根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
    【详解】

    当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,



    ∵AB是直径



    ∴点M的轨迹是以EF为直径的半圆,

    ∴以EF为直径的圆的半径为1
    ∴点M运动的路径长为
    当 时,同理可得点M运动的路径长为
    故选:A.
    【点睛】
    本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
    9、D
    【解析】
    根据多边形的外角和等于360°,与边数无关即可解答.
    【详解】
    ∵多边形的外角和等于360°,与边数无关,
    ∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.
    故选D.
    【点睛】
    本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.
    10、C
    【解析】
    根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
    【详解】
    解:①菱形的对角线互相垂直是真命题;
    ②平分弦(非直径)的直径垂直于弦,是假命题;
    ③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
    ④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
    故选C.
    【点睛】
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(﹣2016, +1)
    【解析】
    据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
    【详解】
    解:∵△ABC是等边三角形AB=3﹣1=2,
    ∴点C到x轴的距离为1+2×=+1,
    横坐标为2,
    ∴C(2, +1),
    第2018次变换后的三角形在x轴上方,
    点C的纵坐标为+1,
    横坐标为2﹣2018×1=﹣2016,
    所以,点C的对应点C′的坐标是(﹣2016,+1)
    故答案为:(﹣2016,+1)
    【点睛】
    本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
    12、a1.
    【解析】
    根据幂的乘方法则进行计算即可.
    【详解】

    故答案为
    【点睛】
    考查幂的乘方,掌握运算法则是解题的关键.
    13、
    【解析】
    利用勾股定理求出AB,再证明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解决问题.
    【详解】
    在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,
    ∴AB==5,
    ∵四边形ABDE是菱形,
    ∴AB=BD=5,OA=OD,
    ∴OC=OA=OD,
    ∴∠OCB=∠ODC,
    ∴tan∠OCB=tan∠ODC==,
    故答案为.
    【点睛】
    本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    14、75°
    【解析】
    试题解析:∵直线l1∥l2,




    故答案为
    15、1
    【解析】
    试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
    解:∵侧面积为15πcm2,
    ∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
    解得:l=5,
    ∴扇形面积为15π=,
    解得:n=1,
    ∴侧面展开图的圆心角是1度.
    故答案为1.
    考点:圆锥的计算.
    16、
    【解析】
    直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
    【详解】
    原式.
    故答案为.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.
    17、
    【解析】
    根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
    【详解】
    解:∵∠BOC=60°,∠BCO=90°,
    ∴∠OBC=30°,
    ∴OC=OB=1
    则边BC扫过区域的面积为:
    故答案为.
    【点睛】
    考核知识点:扇形面积计算.熟记公式是关键.

    三、解答题(共7小题,满分69分)
    18、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
    19、(1)2m(2)27m
    【解析】
    (1)首先构造直角三角形△AEM,利用,求出即可.
    (2)利用Rt△AME中,,求出AE即可.
    【详解】
    解:(1)过点E作EM⊥AB,垂足为M.

    设AB为x.
    在Rt△ABF中,∠AFB=45°,
    ∴BF=AB=x,
    ∴BC=BF+FC=x+1.
    在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,
    又∵,∴,解得:x≈2.
    ∴教学楼的高2m.
    (2)由(1)可得ME=BC=x+1≈2+1=3.
    在Rt△AME中,,
    ∴AE=MEcos22°≈.
    ∴A、E之间的距离约为27m.
    20、(1);(2);(3)
    【解析】
    (1)OA=6,即BC=6,代入,即可得出点B的坐标
    (2)将点B的坐标代入直线l中求出k即可得出解析式
    (3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
    【详解】
    解:∵OA=6,矩形OABC中,BC=OA
    ∴BC=6
    ∵点B在直线上,
    ,解得x=8
    故点B的坐标为(8,6)
    故答案为(8,6)
    (2)把点的坐标代入得,
    解得:

    (3))∵一次函数,必经过),要使y随x的增大而减小
    ∴y值为
    ∴代入,
    解得.
    【点睛】
    本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
    21、(1);(2);(2)小贝的说法正确,理由见解析,.
    【解析】
    (1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;
    (2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;
    (1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长.
    【详解】
    解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.

    ∵△DCE为等边三角形,
    ∴ED=EC,
    ∵OD=OC
    ∴OE垂直平分DC,
    ∴DHDC=1.
    ∵四边形ABCD为正方形,
    ∴△OHD为等腰直角三角形,
    ∴OH=DH=1,
    在Rt△DHE中,
    HEDH=1,
    ∴OE=HE+OH=11;
    (2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,

    在Rt△AOD中,AD=6,DO=1,
    ∴AO1,

    ∴AP=AO+OP=11;
    (1)小贝的说法正确.理由如下,
    如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,

    由题意知,点N为AD的中点,,
    ∴ANAD=1.6,ON⊥AD,
    在Rt△ANO中,
    设AO=r,则ON=r﹣1.2.
    ∵AN2+ON2=AO2,
    ∴1.62+(r﹣1.2)2=r2,
    解得:r,
    ∴AE=ON1.2,
    在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,
    ∴BO,
    ∴BP=BO+PO,
    ∴门角B到门窗弓形弧AD的最大距离为.
    【点睛】
    本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.
    22、(2)(2)7或2.
    【解析】
    试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;
    (2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.
    试题解析:(2)∵△AOM的面积为2,
    ∴|k|=2,
    而k>0,
    ∴k=6,
    ∴反比例函数解析式为y=;
    (2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,
    把x=2代入y=得y=6,
    ∴M点坐标为(2,6),
    ∴AB=AM=6,
    ∴t=2+6=7;
    当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,
    则AB=BC=t-2,
    ∴C点坐标为(t,t-2),
    ∴t(t-2)=6,
    整理为t2-t-6=0,解得t2=2,t2=-2(舍去),
    ∴t=2,
    ∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.
    考点:反比例函数综合题.
    23、(1)60;(2)
    【解析】
    (1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;
    (2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根据BC=BD+CD即可求解.
    解:(1)如图所示,
    ∵∠EAB=30°,AE∥BF,
    ∴∠FBA=30°,
    又∠FBC=75°,
    ∴∠ABC=45°,
    ∵∠BAC=∠BAE+∠CAE=75°,
    ∴∠C=60°.
    故答案为60;
    (2)如图,作AD⊥BC于D,

    在Rt△ABD中,
    ∵∠ABD=45°,AB=60,
    ∴AD=BD=30.
    在Rt△ACD中,
    ∵∠C=60°,AD=30,
    ∴tanC=,
    ∴CD==10,
    ∴BC=BD+CD=30+10.
    答:该船与B港口之间的距离CB的长为(30+10)海里.
    24、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.

    相关试卷

    江西省南昌市十四校2021-2022学年中考数学五模试卷含解析: 这是一份江西省南昌市十四校2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了关于x的方程,已知二次函数y=a等内容,欢迎下载使用。

    江西省南城二中学2021-2022学年中考数学五模试卷含解析: 这是一份江西省南城二中学2021-2022学年中考数学五模试卷含解析,共28页。试卷主要包含了答题时请按要求用笔,|–|的倒数是等内容,欢迎下载使用。

    江西省吉安市达标名校2021-2022学年中考数学五模试卷含解析: 这是一份江西省吉安市达标名校2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了平面直角坐标系中的点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map