江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析
展开这是一份江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析,共24页。试卷主要包含了﹣2018的绝对值是,cs30°的相反数是,要使式子有意义,的取值范围是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
2.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
A.6 B. C.12﹣π D.12﹣π
3.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )
A. B. C. D.
4.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
5.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
6.cos30°的相反数是( )
A. B. C. D.
7.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
9.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为
A.8 B. C.4 D.
10.要使式子有意义,的取值范围是( )
A. B.且 C.. 或 D. 且
11.下列各式正确的是( )
A. B.
C. D.
12.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.
14.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.
15.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.
16.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
17.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
18.不等式组的解集是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
20.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
21.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
22.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
23.(8分)计算:﹣22﹣+|1﹣4sin60°|
24.(10分)已知抛物线y=﹣2x2+4x+c.
(1)若抛物线与x轴有两个交点,求c的取值范围;
(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.
25.(10分)先化简,再求值:,其中m=2.
26.(12分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
27.(12分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
故选C.
考点:动点问题的函数图象.
2、D
【解析】
根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
【详解】
解:∵BC=4,E为BC的中点,
∴CE=2,
∴S1﹣S2=3×4﹣ ,
故选D.
【点睛】
此题考查扇形面积的计算,矩形的性质及面积的计算.
3、A
【解析】
解:分析题中所给函数图像,
段,随的增大而增大,长度与点的运动时间成正比.
段,逐渐减小,到达最小值时又逐渐增大,排除、选项,
段,逐渐减小直至为,排除选项.
故选.
【点睛】
本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
4、C
【解析】
根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
【详解】
解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
∵其中一个交点的坐标为,则另一个交点的坐标为,
故选C.
【点睛】
考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
5、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
6、C
【解析】
先将特殊角的三角函数值代入求解,再求出其相反数.
【详解】
∵cos30°=,
∴cos30°的相反数是,
故选C.
【点睛】
本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.
7、A
【解析】
直接利用点与圆的位置关系进而得出答案.
【详解】
解:∵⊙O的半径为5cm,OA=4cm,
∴点A与⊙O的位置关系是:点A在⊙O内.
故选A.
【点睛】
此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
8、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
9、A
【解析】
【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.
【详解】轴,
,B两点纵坐标相同,
设,,则,,
,
,
故选A.
【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.
10、D
【解析】
根据二次根式和分式有意义的条件计算即可.
【详解】
解:∵ 有意义,
∴a+2≥0且a≠0,
解得a≥-2且a≠0.
故本题答案为:D.
【点睛】
二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
11、A
【解析】
∵,则B错;,则C;,则D错,故选A.
12、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【解析】
(1)利用勾股定理求出AB,从而得到△ABC的周长;
(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
【详解】
解:(1)∵AC=3,BC=4,∠C=90º,
∴根据勾股定理得AB=5,
∴△ABC的周长=5+4+3=12.
(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。
故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【点睛】
本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
14、
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(﹣,).
故答案为(﹣,).
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
15、1
【解析】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.
点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
16、≤M≤6
【解析】
把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
【详解】
由得:
即 所以
由得:
即 所以
∴
∴不等式两边同时乘以−2得:
,即
两边同时加上2得:即
∵
∴
∴
则M的取值范围是≤M≤6.
故答案为:≤M≤6.
【点睛】
此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
17、y1
直接利用一次函数的性质分析得出答案.
【详解】
解:∵直线经过第一、三、四象限,
∴y随x的增大而增大,
∵x1<x1,
∴y1与y1的大小关系为:y1<y1.
故答案为:y1
此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
18、x≥1
【解析】
分析:分别求出两个不等式的解,从而得出不等式组的解集.
详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.
【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答
(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答
(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答
②观察函数图象与△ACQ为锐角三角形时的情况,即可解答
【详解】
解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴﹣2a=2,解得a=﹣1,
∴抛物线解析式为y=﹣x2+2x+3;
(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),
∵DF∥AC,
∴∠DFG=∠ACO,易知抛物线对称轴为x=1,
∴DG=x-1,DF=(x-1),
∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,
∴当x=,DE+DF有最大值为;
答图1 答图2
(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,
∵直线AC的解析式为y=3x+3,
∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,
∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,
∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);
②<t<.
【点睛】
此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.
20、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
21、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
【解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;
(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;
(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:
①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;
②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.
【详解】
解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴,解得,
故抛物线的函数解析式为y=x2﹣2x﹣3;
(2)令x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,解得m=﹣1,
∴点D的坐标为(0,﹣1);(3)
∵点C(3,0),D(0,﹣1),E(1,﹣4),
∴CO=DF=3,DO=EF=1,
根据勾股定理,CD===,
在△COD和△DFE中,
∵,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°﹣90°=90°,
∴CD⊥DE,①当OC与CD是对应边时,
∵△DOC∽△PDC,
∴,即=,
解得DP=,
过点P作PG⊥y轴于点G,
则,即,
解得DG=1,PG=,
当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,
所以点P(﹣,0),
当点P在点D的右边时,OG=DO+DG=1+1=2,
所以,点P(,﹣2);
②当OC与DP是对应边时,
∵△DOC∽△CDP,
∴,即=,
解得DP=3,
过点P作PG⊥y轴于点G,
则,即,
解得DG=9,PG=3,
当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,
所以,点P的坐标是(﹣3,8),
当点P在点D的右边时,OG=OD+DG=1+9=10,
所以,点P的坐标是(3,﹣10),
综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.
22、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;
【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.
【详解】
(1)①如图2,∵A(1,3),B(1,1),
∴OA=3,OB=1,
由旋转知,∠ABC=91°,AB=CB,
∴∠ABO+∠CBE=91°,
过点C作CG⊥OB于G,
∴∠CBG+∠BCG=91°,
∴∠ABO=∠BCG,
∴△AOB≌△GBC,
∴CG=OB=1,BG=OA=3,
∴OG=OB+BG=4
∴C(4,1),
抛物线经过点A(1,3),和D(﹣2,1),
∴,
∴,
∴抛物线解析式为y=﹣x2+x+3;
②由①知,△AOB≌△EBC,
∴∠BAO=∠CBF,
∵∠POB=∠BAO,
∴∠POB=∠CBF,
如图1,OP∥BC,
∵B(1,1),C(4,1),
∴直线BC的解析式为y=x﹣,
∴直线OP的解析式为y=x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍)
∴P(,);
在直线OP上取一点M(3,1),
∴点M的对称点M'(3,﹣1),
∴直线OP'的解析式为y=﹣x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍),
∴P'(,﹣);
(2)同(1)②的方法,如图3,
∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,
∴,
∴抛物线y=ax2﹣6ax+8a+1,
令y=1,
∴ax2﹣6ax+8a+1=1,
∴x1×x2=
∵符合条件的Q点恰好有2个,
∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,
∴x1×x2=≤1,
∵a<1,
∴8a+1≥1,
∴a≥﹣,
即:﹣≤a<1.
【点睛】
本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.
23、-1
【解析】
直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
【详解】
解:原式=
=
=﹣1.
【点睛】
此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.
24、 (1)c>﹣2;(2) x1=﹣1,x2=1.
【解析】
(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;
(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.
【详解】
(1)解:∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
即16+8c>0,
解得c>﹣2;
(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,
∵抛物线经过点(﹣1,0),
∴抛物线与x轴的另一个交点为(1,0),
∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.
【点睛】
考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.
25、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.
【解析】
(1)画出树状图即可解题,(2)画出树状图即可解题.
【详解】
(1)画树状图如下:
由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,
∴P(两个小孩都是女孩)=.
(2)画树状图如下:
由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,
∴P(三个小孩中恰好是2女1男)=.
【点睛】
本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.
27、(1)A(-1,0),B(0,1),D(1,0)
(2)一次函数的解析式为 反比例函数的解析式为
【解析】解:(1)∵OA=OB=OD=1,
∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0)。
(2)∵点A、B在一次函数(k≠0)的图象上,
∴,解得。
∴一次函数的解析式为。
∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2)。
又∵点C在反比例函数(m≠0)的图象上,∴m=1×2=2。
∴反比例函数的解析式为。
(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标。
(2)将A、B两点坐标分别代入,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入可确定反比例函数的解析式。
相关试卷
这是一份江西省吉安市吉水外国语校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。
这是一份2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析,共24页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。
这是一份2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是,我们知道等内容,欢迎下载使用。