江西省南昌市2021-2022学年中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )
A.1 B.2 C.3 D.4
2.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是( )
A. B. C. D.
3.如图所示的两个四边形相似,则α的度数是( )
A.60° B.75° C.87° D.120°
4.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是( )
A.监测点A B.监测点B C.监测点C D.监测点D
5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )
A.52° B.38° C.42° D.60°
6.一元二次方程的根是( )
A. B.
C. D.
7.关于x的不等式的解集为x>3,那么a的取值范围为( )
A.a>3 B.a<3 C.a≥3 D.a≤3
8.“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
9.下列美丽的图案中,不是轴对称图形的是( )
A. B. C. D.
10.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )
A.70° B.110° C.130° D.140°
二、填空题(共7小题,每小题3分,满分21分)
11.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.
12.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.
13.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
14.8的立方根为_______.
15.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
16.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.
17.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
三、解答题(共7小题,满分69分)
18.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
19.(5分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
20.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求一次函数y=kx+b和y=的表达式;
(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
21.(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
22.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
23.(12分)如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值.
24.(14分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.
(1)若a+e=0,则代数式b+c+d= ;
(2)若a是最小的正整数,先化简,再求值:;
(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
【详解】
由题意得:E、M、D位于反比例函数图象上,
则,
过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
又∵M为矩形ABCO对角线的交点,
∴S矩形ABCO=4S□ONMG=4|k|,
∵函数图象在第一象限,k>0,
∴.
解得:k=1.
故选C.
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.
2、D
【解析】
根据一次函数的性质结合题目中的条件解答即可.
【详解】
解:由题可得,水深与注水量之间成正比例关系,
∴随着水的深度变高,需要的注水量也是均匀升高,
∴水瓶的形状是圆柱,
故选:D.
【点睛】
此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.
3、C
【解析】
【分析】根据相似多边形性质:对应角相等.
【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
故选C
【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
4、C
【解析】
试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;
、由监测点监测时,函数值随的增大而增大,故选项错误;
、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;
、由监测点监测时,函数值随的增大而减小,选项错误.
故选.
5、A
【解析】
试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.
考点:平行线的性质.
6、D
【解析】
试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
考点:一元二次方程的解法——因式分解法——提公因式法.
7、D
【解析】
分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.
详解:解不等式2(x-1)>4,得:x>3,
解不等式a-x<0,得:x>a,
∵不等式组的解集为x>3,
∴a≤3,
故选D.
点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
8、D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.
9、A
【解析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选A.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
10、D
【解析】
∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.
【详解】
解:∵x2+10x-11=0,
∴x2+10x=11,
则x2+10x+25=11+25,即(x+5)2=36,
∴m=5、n=36,
∴m+n=1,
故答案为1.
【点睛】
此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
12、k>2
【解析】
根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.
【详解】
因为抛物线y=(k﹣2)x2+k的开口向上,
所以k﹣2>1,即k>2,
故答案为k>2.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.
13、1
【解析】
【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,且DE=BC,
∴△ADE∽△ABC,
则=,即,
解得:x=1,
即四边形BCED的面积为1,
故答案为1.
【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
14、2.
【解析】
根据立方根的定义可得8的立方根为2.
【点睛】
本题考查了立方根.
15、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
16、5
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
考点:直角三角形斜边上的中线.
17、3.
【解析】
可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.
【详解】
得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
【点睛】
本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
三、解答题(共7小题,满分69分)
18、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大
【解析】
(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,
(2)①据题意得,y=﹣50x+15000,
②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,
(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.
【详解】
解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得
解得
答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.
(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,
②据题意得,100﹣x≤2x,解得x≥33,
∵y=﹣50x+15000,﹣50<0,
∴y随x的增大而减小,
∵x为正整数,
∴当x=34时,y取最大值,则100﹣x=66,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,
33≤x≤70
①当0<m<50时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②m=50时,m﹣50=0,y=15000,
即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;
③当50<m<100时,m﹣50>0,y随x的增大而增大,
∴当x=70时,y取得最大值.
即商店购进70台A型电脑和30台B型电脑的销售利润最大.
【点睛】
本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.
19、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
试题解析:(1)证明:∵,
∴.
∵CD平分,BC=BD,
∴,.
∴.
∴∥.
∴.
∵AB是⊙O的直径,
∴BD是⊙O的切线.
(2)连接AC,
∵AB是⊙O直径,
∴.
∵,
可得.
∴
在Rt△CEB中,∠CEB=90°,由勾股定理得
∴.
∵,∠EFC =∠BFD,
∴△EFC∽△BFD.
∴.
∴.
∴BF=1.
考点:切线的判定,相似三角形,勾股定理
20、(1),;(2)点C的坐标为或;(3)2.
【解析】
试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.
试题解析:
(1)∵点A(4,3)在反比例函数y=的图象上,
∴a=4×3=12,
∴反比例函数解析式为y=;
∵OA==1,OA=OB,点B在y轴负半轴上,
∴点B(0,﹣1).
把点A(4,3)、B(0,﹣1)代入y=kx+b中,
得: ,解得: ,
∴一次函数的解析式为y=2x﹣1.
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.
令y=2x﹣1中y=0,则x=,
∴D(,0),
∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,
解得:m=或m=.
故当△ABC的面积是8时,点C的坐标为(,0)或(,0).
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.
令y=中x=1,则y=12,
∴E(1,12),;
令y=中x=4,则y=3,
∴F(4,3),
∵EM∥FN,且EM=FN,
∴四边形EMNF为平行四边形,
∴S=EM•(yE﹣yF)=3×(12﹣3)=2.
C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.
故答案为2.
【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.
21、(1)(2)
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1).
(2)用表格列出所有可能的结果:
第二次
第一次
红球1
红球2
白球
黑球
红球1
(红球1,红球2)
(红球1,白球)
(红球1,黑球)
红球2
(红球2,红球1)
(红球2,白球)
(红球2,黑球)
白球
(白球,红球1)
(白球,红球2)
(白球,黑球)
黑球
(黑球,红球1)
(黑球,红球2)
(黑球,白球)
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)==.
考点:概率统计
22、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
23、(1);(2);(3)或
【解析】
(1)如图2,连接OP,则DF与半圆相切,利用△OPD≌△FCD(AAS),可得:OD=DF=30;
(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;
(3)设PG=GH=m,则:,求出,利用,即可求解.
【详解】
(1)如图,连接
∵与半圆相切,∴,∴,
在矩形中,,
∵,根据勾股定理,得
在和中,
∴
∴
(2)如图,
当点与点重合时,
过点作与点,则
∵
且,由(1)知:
∴,∴,
∴
当与半圆相切时,由(1)知:,
∴
(3)设半圆与矩形对角线交于点P、H,过点O作OG⊥DF,
则PG=GH,
,则,
设:PG=GH=m,则:,
,
整理得:25m2-640m+1216=0,
解得:,
.
【点睛】
本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键.
24、 (1)0;(1) ,;(3) ﹣1<x<1.
【解析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
(1)根据题意可得:a=1,将分式计算并代入可得结论即可;
(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
【详解】
解:(1)∵a+e=0,即a、e互为相反数,
∴点C表示原点,
∴b、d也互为相反数,
则a+b+c+d+e=0,
故答案为:0;
(1)∵a是最小的正整数,
∴a=1,
则原式=÷[+]
=÷
=•
=,
当a=1时,
原式==;
(3)∵A、B、C、D、E为连续整数,
∴b=a+1,c=a+1,d=a+3,e=a+4,
∵a+b+c+d=1,
∴a+a+1+a+1+a+3=1,
4a=﹣4,
a=﹣1,
∵MA+MD=3,
∴点M再A、D两点之间,
∴﹣1<x<1,
故答案为:﹣1<x<1.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
江西省南昌市十四校2021-2022学年中考数学模拟试题含解析: 这是一份江西省南昌市十四校2021-2022学年中考数学模拟试题含解析,共26页。试卷主要包含了方程的解为等内容,欢迎下载使用。
2021-2022学年江西省南昌市新建区中考数学押题卷含解析: 这是一份2021-2022学年江西省南昌市新建区中考数学押题卷含解析,共25页。试卷主要包含了学校小组名同学的身高,的一个有理化因式是等内容,欢迎下载使用。
2021-2022学年江西省南昌市青山湖区中考四模数学试题含解析: 这是一份2021-2022学年江西省南昌市青山湖区中考四模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,剪纸是我国传统的民间艺术,计算3a2-a2的结果是等内容,欢迎下载使用。