终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    江西省上饶市上饶县达标名校2022年中考四模数学试题含解析

    立即下载
    加入资料篮
    江西省上饶市上饶县达标名校2022年中考四模数学试题含解析第1页
    江西省上饶市上饶县达标名校2022年中考四模数学试题含解析第2页
    江西省上饶市上饶县达标名校2022年中考四模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省上饶市上饶县达标名校2022年中考四模数学试题含解析

    展开

    这是一份江西省上饶市上饶县达标名校2022年中考四模数学试题含解析,共21页。试卷主要包含了股市有风险,投资需谨慎等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    2.下列运算正确的(  )
    A.(b2)3=b5 B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a3
    3.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )

    A. B.
    C. D.
    4.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(  )

    A.(6,3) B.(6,4) C.(7,4) D.(8,4)
    5.截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是(  )
    A.28 B.29 C.30 D.31
    6.已知一个多边形的内角和是外角和的3倍,则这个多边形是(  )
    A.五边形 B.六边形 C.七边形 D.八边形
    7.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
    A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
    8.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )

    A.1或2 B.2或3 C.3或4 D.4或5
    9.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是(  )

    A. B.
    C. D.
    10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm.

    12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
    13.如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么∠AOC度数为_____度.

    14.小青在八年级上学期的数学成绩如下表所示.

    平时测验
    期中考试
    期末考试
    成绩
    86
    90
    81
    如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.

    15.已知方程组,则x+y的值为_______.
    16.已知关于X的一元二次方程有实数根,则m的取值范围是____________________
    三、解答题(共8题,共72分)
    17.(8分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n.
    (1)请用列表或树状图的方式把(m,n)所有的结果表示出来.
    (2)求选出的(m,n)在二、四象限的概率.
    18.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
    (1)求⊙O的半径长;
    (2)求线段DG的长.

    19.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
    (1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
    (2)当直线l与AD边有公共点时,求t的取值范围.

    20.(8分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
    (1)求二次函数y=ax2+bx的解析式;
    (2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.
    21.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:
    (1)该公司“高级技工”有   名;
    (2)所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;
    (3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
    (4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    22.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
    (1)求此抛物线的解析式.
    (2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.

    23.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
    (1)B点坐标为  ,并求抛物线的解析式;
    (2)求线段PC长的最大值;
    (3)若△PAC为直角三角形,直接写出此时点P的坐标.

    24.计算:(﹣2018)0﹣4sin45°+﹣2﹣1.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据从正面看得到的图形是主视图,可得答案.
    【详解】
    解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
    2、C
    【解析】
    分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.
    详解:A、(b2)3=b6,故此选项错误;
    B、x3÷x3=1,故此选项错误;
    C、5y3•3y2=15y5,正确;
    D、a+a2,无法计算,故此选项错误.
    故选C.
    点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.
    3、B
    【解析】
    根据图示,可得:b<0<a,|b|>|a|,据此判断即可.
    【详解】
    ∵b<0<a,|b|>|a|,
    ∴a+b<0,
    ∴|a+b|= -a-b.
    故选B.
    【点睛】
    此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.
    4、C
    【解析】
    根据题意知小李所对应的坐标是(7,4).
    故选C.
    5、C
    【解析】
    根据中位数的定义即可解答.
    【详解】
    解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,
    最中间的两个数的平均数是:=30,
    则这组数据的中位数是30;
    故本题答案为:C.
    【点睛】
    此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    6、D
    【解析】
    根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
    【详解】
    设多边形的边数是n,则
    (n−2)⋅180=3×360,
    解得:n=8.
    故选D.
    【点睛】
    此题考查多边形内角与外角,解题关键在于掌握其定理.
    7、B
    【解析】
    试题分析: 15000000=1.5×2.故选B.
    考点:科学记数法—表示较大的数
    8、A
    【解析】
    连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.
    【详解】
    解:如图,连接B′D,过点B′作B′M⊥AD于M,
    ∵点B的对应点B′落在∠ADC的角平分线上,
    ∴设DM=B′M=x,则AM=7﹣x,
    又由折叠的性质知AB=AB′=5,
    ∴在直角△AMB′中,由勾股定理得到:,
    即,
    解得x=3或x=4,
    则点B′到BC的距离为2或1.
    故选A.

    【点睛】
    本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
    9、B
    【解析】
    根据相似三角形的判定方法一一判断即可.
    【详解】
    解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
    故选:B.
    【点睛】
    本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.
    10、A
    【解析】
    ∵∠C=90°,BC=2cm,∠A=30°,
    ∴AB=4,
    由勾股定理得:AC=2,
    ∵四边形DEFG为矩形,∠C=90,
    ∴DE=GF=2,∠C=∠DEF=90°,
    ∴AC∥DE,
    此题有三种情况:
    (1)当0<x<2时,AB交DE于H,如图

    ∵DE∥AC,
    ∴,
    即,
    解得:EH=x,
    所以y=•x•x=x2,
    ∵x 、y之间是二次函数,
    所以所选答案C错误,答案D错误,
    ∵a=>0,开口向上;
    (2)当2≤x≤6时,如图,

    此时y=×2×2=2,
    (3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,

    BF=x﹣6,与(1)类同,同法可求FN=X﹣6,
    ∴y=s1﹣s2,
    =×2×2﹣×(x﹣6)×(X﹣6),
    =﹣x2+6x﹣16,
    ∵﹣<0,
    ∴开口向下,
    所以答案A正确,答案B错误,
    故选A.
    点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、36.
    【解析】
    试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.
    ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.
    考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.
    12、
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
    【详解】
    画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:=.
    故答案为:.
    【点睛】
    本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
    13、1.
    【解析】
    首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数.
    【详解】
    解:∵弦AC与半径OB互相平分,
    ∴OA=AB,
    ∵OA=OC,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴∠AOC=1°,
    故答案为1.
    【点睛】
    本题主要考查了垂径定理的知识,解题的关键是证明△OAB是等边三角形,此题难度不大.
    14、84.2
    【解析】
    小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
    15、1
    【解析】
    方程组两方程相加即可求出x+y的值.
    【详解】

    ①+②得:1(x+y)=9,
    则x+y=1.
    故答案为:1.
    【点睛】
    此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
    16、m≤3且m≠2
    【解析】
    试题解析:∵一元二次方程有实数根
    ∴4-4(m-2)≥0且m-2≠0
    解得:m≤3且m≠2.

    三、解答题(共8题,共72分)
    17、(1)详见解析;(2)P=.
    【解析】
    试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.
    试题解析:
    (1)画树状图得:
    则(m,n)共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).
    (2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),
    ∴所选出的m,n在第二、三四象限的概率为:P==
    点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).
    (2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.
    (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
    (4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
    18、 (1) 1;(2)
    【解析】
    (1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
    (2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
    试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
    ∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
    (2)过G作GP⊥AC,垂足为P,设GP=x,
    由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
    ∴GP=PC=x,
    ∵Rt△AGP∽Rt△ABC,
    ∴=,解得x=,
    即GP=,CG=,
    ∴OG=CG-CO=-=,
    在Rt△ODG中,DG==.

    19、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
    【解析】
    (1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
    (2)当直线l经过点D时,设l的解析式代入数值解出即可
    【详解】
    (1)此时点A在直线l上.
    ∵BC=AB=2,点O为BC中点,
    ∴点B(-1,0),A(-1,2).
    把点A的横坐标x=-1代入解析式y=2x+4,得
    y=2,等于点A的纵坐标2,
    ∴此时点A在直线l上.
    (2)由题意可得,点D(1,2),及点M(-2,0),
    当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
    ∴解得
    由(1)知,当直线l经过点A时,t=4.
    ∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.

    【点睛】
    本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
    20、(1)y=x2+x;(2)t=-4,r=-1.
    【解析】
    (1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;
    (2)进行分类讨论,分别求出t和r的值.
    【详解】
    (1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,
    Δ=0得:(b-1)2=0,得b=1,
    ∵对称轴为=1,
    ∴=1,
    ∴a=,
    ∴y=x2+x.
    (2)因为y=x2+x=(x-1)2+,
    所以顶点(1,)
    当-2

    相关试卷

    江西省上饶市上饶县达标名校2021-2022学年中考数学模拟试题含解析:

    这是一份江西省上饶市上饶县达标名校2021-2022学年中考数学模拟试题含解析,共23页。

    2022年江西省上饶市鄱阳县达标名校十校联考最后数学试题含解析:

    这是一份2022年江西省上饶市鄱阳县达标名校十校联考最后数学试题含解析,共18页。试卷主要包含了计算的结果是,cs60°的值等于,如图1是一座立交桥的示意图等内容,欢迎下载使用。

    2022届江西省上饶市广信区重点达标名校中考数学押题试卷含解析:

    这是一份2022届江西省上饶市广信区重点达标名校中考数学押题试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,函数y=ax2+1与,一元一次不等式2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map