|试卷下载
终身会员
搜索
    上传资料 赚现金
    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份焦作市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.不等式组的解集在数轴上表示正确的是( )
    A. B. C. D.
    2.已知圆内接正三角形的面积为3,则边心距是(  )
    A.2 B.1 C. D.
    3.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    4.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )

    A.10 B.11 C.12 D.13
    5.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为(  )

    A.115° B.120° C.125° D.130°
    6.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(  )

    A. B. C. D.
    7.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为(  )

    A.﹣2 B.4 C.﹣4 D.2
    8.下列运算正确的是(  )
    A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b2
    9.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )

    A.小明中途休息用了20分钟
    B.小明休息前爬山的平均速度为每分钟70米
    C.小明在上述过程中所走的路程为6600米
    D.小明休息前爬山的平均速度大于休息后爬山的平均速度
    10.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为  

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.

    12.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________ .

    13.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.

    14.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.

    15.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是( )
    A.﹣1 B.0 C.1 D.2
    16.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.

    17.计算:________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

    19.(5分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m=   ,n=   ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
    20.(8分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.
    (1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
    (2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
    21.(10分) (1)解方程组
    (2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.
    22.(10分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

    (1)求直线的解析式;
    (2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
    23.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
    24.(14分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:

    (1)该调查小组抽取的样本容量是多少?
    (2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
    (3)请估计该市中小学生一天中阳光体育运动的平均时间.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
    考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
    2、B
    【解析】
    根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
    【详解】
    如图,

    连接AO并延长交BC于点D,则AD⊥BC,
    设OD=x,则AD=3x,
    ∵tan∠BAD=,
    ∴BD= tan30°·AD=x,
    ∴BC=2BD=2x,
    ∵ ,
    ∴×2x×3x=3,
    ∴x=1
    所以该圆的内接正三边形的边心距为1,
    故选B.
    【点睛】
    本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
    3、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    4、B
    【解析】
    根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决.
    【详解】
    由统计图可得,
    本班学生有:6+9+10+8+7=40(人),
    该班这些学生一周锻炼时间的中位数是:11,
    故选B.
    【点睛】
    本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.
    5、C
    【解析】
    分析:
    由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.
    详解:
    ∵在△ABE中,∠A=90°,∠ABE=20°,
    ∴∠AEB=70°,
    ∴∠DEB=180°-70°=110°,
    ∵点D沿EF折叠后与点B重合,
    ∴∠DEF=∠BEF=∠DEB=55°,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠DEF+∠EFC=180°,
    ∴∠EFC=180°-55°=125°,
    ∴由折叠的性质可得∠EFC′=∠EFC=125°.
    故选C.
    点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.
    6、C
    【解析】
    左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确.
    故此题选C.
    7、C
    【解析】
    试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.

    则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
    ∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
    又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
    故选C.
    考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
    8、D
    【解析】
    根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;
    根据同底数幂相乘,可知a2•a3=a5,故不正确;
    根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;
    根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.
    故选D.
    【详解】
    请在此输入详解!
    9、C
    【解析】
    根据图像,结合行程问题的数量关系逐项分析可得出答案.
    【详解】
    从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
    小明休息前爬山的平均速度为:(米/分),B正确;
    小明在上述过程中所走的路程为3800米,C错误;
    小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
    故选C.
    考点:函数的图象、行程问题.
    10、B
    【解析】
    试题解析:在菱形中,,,所以,,在中,,
    因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.


    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
    解答:

    解:如图,连接BM,
    ∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
    故答案为1.
    点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
    12、°
    【解析】
    通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.
    【详解】
    把△PAB绕B点顺时针旋转90°,得△P′BC,

    则△PAB≌△P′BC,
    设PA=x,PB=2x,PC=3x,连PP′,
    得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,
    ∠PP′B=45°.
    又PC2=PP′2+P′C2,
    得∠PP′C=90°.
    故∠APB=∠CP′B=45°+90°=135°.
    故答案为135°.
    【点睛】
    本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.
    13、(,),(-4,-5)
    【解析】
    求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
    【详解】
    令y=0代入y=-x2-2x+3,
    ∴x=-3或x=1,
    ∴OA=1,OB=3,
    令x=0代入y=-x2-2x+3,
    ∴y=3,
    ∴OC=3,
    当点D在x轴下方时,
    ∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
    ∵OB=OC,
    ∴∠CBO=45°,
    ∴BG=EG,OB=OC=3,
    ∴由勾股定理可知:BC=3,
    设EG=x,
    ∴CG=3-x,
    ∵∠DCB=∠ACO.
    ∴tan∠DCB=tan∠ACO=,
    ∴,
    ∴x=,
    ∴BE=x=,
    ∴OE=OB-BE=,
    ∴E(-,0),
    设CE的解析式为y=mx+n,交抛物线于点D2,
    把C(0,3)和E(-,0)代入y=mx+n,
    ∴,解得:.
    ∴直线CE的解析式为:y=2x+3,
    联立
    解得:x=-4或x=0,
    ∴D2的坐标为(-4,-5)
    设点E关于BC的对称点为F,
    连接FB,

    ∴∠FBC=45°,
    ∴FB⊥OB,
    ∴FB=BE=,
    ∴F(-3,)
    设CF的解析式为y=ax+b,
    把C(0,3)和(-3,)代入y=ax+b

    解得:,
    ∴直线CF的解析式为:y=x+3,
    联立
    解得:x=0或x=-
    ∴D1的坐标为(-,)
    故答案为(-,)或(-4,-5)
    【点睛】
    本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
    14、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.

    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    15、D
    【解析】
    根据根的判别式得到关于a的方程,求解后可得到答案.
    【详解】
    关于x的方程有两个不相等的实数根,

    解得:
    满足条件的最小整数的值为2.
    故选D.
    【点睛】
    本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.
    16、
    【解析】
    求出黑色区域面积与正方形总面积之比即可得答案.
    【详解】
    图中有9个小正方形,其中黑色区域一共有3个小正方形,
    所以随意投掷一个飞镖,击中黑色区域的概率是,
    故答案为.
    【点睛】
    本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.
    17、
    【解析】
    根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
    【详解】
    解:原式=
    =
    【点睛】
    本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

    三、解答题(共7小题,满分69分)
    18、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    19、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
    【解析】
    【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
    (2)在(1)的基础上分段表示利润,讨论最值;
    (3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
    【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
    32=12m﹣76m,
    解得m=,
    当第26天的售价为25元/千克时,代入y=n,
    则n=25,
    故答案为m=,n=25;
    (2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
    当1≤x<20时,
    W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
    ∴当x=18时,W最大=968,
    当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
    ∵28>0,
    ∴W随x的增大而增大,
    ∴当x=30时,W最大=952,
    ∵968>952,
    ∴当x=18时,W最大=968;
    (3)当1≤x<20时,令﹣2x2+72x+320=870,
    解得x1=25,x2=11,
    ∵抛物线W=﹣2x2+72x+320的开口向下,
    ∴11≤x≤25时,W≥870,
    ∴11≤x<20,
    ∵x为正整数,
    ∴有9天利润不低于870元,
    当20≤x≤30时,令28x+112≥870,
    解得x≥27,
    ∴27≤x≤30
    ∵x为正整数,
    ∴有3天利润不低于870元,
    ∴综上所述,当天利润不低于870元的天数共有12天.
    【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
    20、(1);(2)选择乙印刷厂比较优惠.
    【解析】
    (1)根据题意直接写出两厂印刷厂的收费y甲(元)关于印刷数量x(份)之间的函数关系式;
    (2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.
    【详解】
    (1)根据题意可知:
    甲印刷厂的收费y甲=0.3x×0.9+100=0.27x+100,y关于x的函数关系式是y甲=0.27x+100(x>0);
    (2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).
    ∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.
    【点睛】
    本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.
    21、(1);(2)当坐标为时,取得最小值为.
    【解析】
    (1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值.
    【详解】
    解:(1)
    ①②得:
    解得:
    把代入②得,
    则方程组的解为
    (2 )由题意得:,
    当坐标为时,取得最小值为.
    【点睛】
    此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.
    22、(1)直线的解析式为:.(2)平移的时间为5秒.
    【解析】
    (1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
    (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
    在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
    【详解】
    (1)由题意得,
    ∴点坐标为.
    ∵在中,,

    ∴点的坐标为.
    设直线的解析式为,
    由过、两点,
    得,
    解得,
    ∴直线的解析式为:.
    (2)如图,

    设平移秒后到处与第一次外切于点,
    与轴相切于点,连接,.
    则,
    ∵轴,∴,
    在中,.
    ∵,
    ∴,
    ∴(秒),
    ∴平移的时间为5秒.
    【点睛】
    本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
    23、(1)2400个, 10天;(2)1人.
    【解析】
    (1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
    【详解】
    解:(1)解:设原计划每天生产零件x个,由题意得,

    解得x=2400,
    经检验,x=2400是原方程的根,且符合题意.
    ∴规定的天数为24000÷2400=10(天).
    答:原计划每天生产零件2400个,规定的天数是10天.
    (2)设原计划安排的工人人数为y人,由题意得,
    [5×20×(1+20%)×+2400] ×(10-2)=24000,
    解得,y=1.
    经检验,y=1是原方程的根,且符合题意.
    答:原计划安排的工人人数为1人.
    【点睛】
    本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.
    24、(4)500;(4)440,作图见试题解析;(4)4.4.
    【解析】
    (4)利用0.5小时的人数除以其所占比例,即可求出样本容量;
    (4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;
    (4)计算出该市中小学生一天中阳光体育运动的平均时间即可.
    【详解】
    解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,
    ∴本次调查共抽样了500名学生;
    (4)4.5小时的人数为:500×4.4=440(人),如图所示:

    (4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.
    考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.

    相关试卷

    云南省文山市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份云南省文山市达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了实数的相反数是等内容,欢迎下载使用。

    宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,在同一平面内,下列说法,估计-1的值在等内容,欢迎下载使用。

    2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了sin60°的值为,下列各数中负数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map