


辽宁省辽阳市二中学教育协作团队2021-2022学年中考数学全真模拟试题含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.16B.12C.24D.18
2.下列式子中,与互为有理化因式的是( )
A.B.C.D.
3.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
A.10B.14C.10或14D.8或10
4.二次函数y=x2+bx–1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2–2x–1–t=0(t为实数)在–1
C.–2≤t<2D.2
A.B.C.D.
6.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个B.1个C.2个D.3个
7.如图,△ABC中,D、E分别为AB、AC的中点,已知△ADE的面积为1,那么△ABC的面积是( )
A.2B.3C.4D.5
8.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
9.如图,下列各数中,数轴上点A表示的可能是( )
A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根
10.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是( )
A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
则二次函数y=ax2+bx+c在x=2时,y=______.
12.计算=________.
13.如图,在△ABC中,DE∥BC,,则=_____.
14.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.
15.三人中有两人性别相同的概率是_____________.
16.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.
三、解答题(共8题,共72分)
17.(8分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.
18.(8分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
19.(8分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
20.(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
21.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.
七年级英语口语测试成绩统计表
请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上包括B 级的学生人数.
22.(10分)计算:÷(﹣1)
23.(12分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
24.如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
【详解】
解:∵四边形ABCD是菱形,∴AB=BC.
∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
故选A.
【点睛】
本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
2、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
3、B
【解析】
试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
∴22﹣4m+3m=0,m=4,
∴x2﹣8x+12=0,
解得x1=2,x2=1.
①当1是腰时,2是底边,此时周长=1+1+2=2;
②当1是底边时,2是腰,2+2<1,不能构成三角形.
所以它的周长是2.
考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
4、B
【解析】
利用对称性方程求出b得到抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x<4时对应的函数值的范围为﹣2≤y<7,由于关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,然后利用函数图象可得到t的范围.
【详解】
抛物线的对称轴为直线x=﹣=1,解得b=﹣2,
∴抛物线解析式为y=x2﹣2x﹣1,则顶点坐标为(1,﹣2),
当x=﹣1时,y=x2﹣2x﹣1=2;当x=4时,y=x2﹣2x﹣1=7,
当﹣1<x<4时,﹣2≤y<7,
而关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解可看作二次函数y=x2﹣2x﹣1与直线y=t有交点,
∴﹣2≤t<7,
故选B.
【点睛】
本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
5、D
【解析】
画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.
【详解】
画树状图如下:
一共有20种情况,其中两个球中至少有一个红球的有14种情况,
因此两个球中至少有一个红球的概率是:.
故选:D.
【点睛】
此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
6、B
【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
【详解】
①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.
【点睛】
本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
7、C
【解析】
根据三角形的中位线定理可得DE∥BC,=,即可证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方可得=,已知△ADE的面积为1,即可求得S△ABC=1.
【详解】
∵D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,=,
∴△ADE∽△ABC,
∴=()2=,
∵△ADE的面积为1,
∴S△ABC=1.
故选C.
【点睛】
本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得△ADE∽△ABC,根据相似三角形面积的比等于相似比的平方得到=是解决问题的关键.
8、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
9、C
【解析】
解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
故根据数轴可知,
故选C
10、D
【解析】
首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
【详解】
解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
故选D.
【点睛】
此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣1
【解析】
试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
解:∵x=﹣3时,y=7;x=5时,y=7,
∴二次函数图象的对称轴为直线x=1,
∴x=0和x=2时的函数值相等,
∴x=2时,y=﹣1.
故答案为﹣1.
12、1
【解析】
试题解析:3-2=1.
13、
【解析】
先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.
【详解】
解:∵DE∥BC,,
∴,
由平行条件易证△ADE△ABC,
∴S△ADE:S△ABC=1:9,
∴=.
【点睛】
本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.
14、5:1
【解析】
根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.
【详解】
解:
作AE∥BC交DC于点E,交DF于点F,
设每个小正方形的边长为a,
则△DEF∽△DCN,
∴==,
∴EF=a,
∵AF=2a,
∴AE=a,
∵△AME∽△BMC,
∴===,
故答案为:5:1.
【点睛】
本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、1
【解析】分析:
由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.
详解:
∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,
∴三人中至少有两个人的性别是相同的,
∴P(三人中有二人性别相同)=1.
点睛:列出本题中所有的等可能结果是解题的关键.
16、(,)
【解析】
根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
【详解】
解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
则△DEF的边长是△ABC边长的倍,
∴点F的坐标为(1×,×),即(,),
故答案为:(,).
【点睛】
本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
三、解答题(共8题,共72分)
17、
【解析】
直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.
【详解】
原式
.
【点睛】
考核知识点:三角函数混合运算.正确计算是关键.
18、(1)见解析;(2)⊙O直径的长是4.
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
【详解】
证明:(1)连接BD,交AC于F,
∵DC⊥BE,
∴∠BCD=∠DCE=90°,
∴BD是⊙O的直径,
∴∠DEC+∠CDE=90°,
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°,
∵弧BC=弧BC,
∴∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴BD⊥DE,
∴DE是⊙O切线;
解:(2)∵AC∥DE,BD⊥DE,
∴BD⊥AC.
∵BD是⊙O直径,
∴AF=CF,
∴AB=BC=8,
∵BD⊥DE,DC⊥BE,
∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
∴△BDC∽△BED,
∴=,
∴BD2=BC•BE=8×10=80,
∴BD=4.
即⊙O直径的长是4.
【点睛】
此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
19、(1)抛物线的解析式为:;
(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②存在.R点的坐标是(3,﹣);
(3)M的坐标为(1,﹣).
【解析】
试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
∵正方形的边长2,
∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴抛物线的解析式为:,
答:抛物线的解析式为:;
(2)①由图象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2﹣8t+4(0≤t≤1),
∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合题意,舍去),
此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
若R点存在,分情况讨论:
(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
则R的横坐标为3,R的纵坐标为﹣,
即R(3,﹣),
代入,左右两边相等,
∴这时存在R(3,﹣)满足题意;
(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
则R(1,﹣)代入,,
左右不相等,∴R不在抛物线上.(1分)
综上所述,存点一点R(3,﹣)满足题意.
答:存在,R点的坐标是(3,﹣);
(3)如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距离之差为|DB|时,差值最大,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
解得:k=,b=﹣,
∴y=x﹣,
抛物线的对称轴是x=1,
把x=1代入得:y=﹣
∴M的坐标为(1,﹣);
答:M的坐标为(1,﹣).
考点:二次函数综合题.
20、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
【解析】
(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
【详解】
(1)解:设2018至2020年寝室数量的年平均增长率为x,
根据题意得:64(1+x)2=121,
解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
答:2018至2020年寝室数量的年平均增长率为37.5%.
(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
∵单人间的数量在20至30之间(包括20和30),
∴ ,
解得:15 ≤y≤16 .
根据题意得:w=2y+20y+121﹣6y=16y+121,
∴当y=16时,16y+121取得最大值为1.
答:该校的寝室建成后最多可供1名师生住宿.
【点睛】
本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
21、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
22、
【解析】
根据分式的混合运算法则把原式进行化简即可.
【详解】
原式=÷(﹣)
=÷
=•
=.
【点睛】
本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
23、(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.
【解析】
分析:(1)根据SAS即可证明;
(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△DEO和△BOF中,
,
∴△DOE≌△BOF.
(2)结论:四边形EBFD是矩形.
理由:∵OD=OB,OE=OF,
∴四边形EBFD是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
24、(1)125°;(2)125°;(3)∠BOC=90°+n°.
【解析】
如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
【详解】
如图,
∵BO、CO是角平分线,
∴∠ABC=2∠1,∠ACB=2∠2,
∵∠ABC+∠ACB+∠A=180°,
∴2∠1+2∠2+∠A=180°,
∵∠1+∠2+∠BOC=180°,
∴2∠1+2∠2+2∠BOC=360°,
∴2∠BOC﹣∠A=180°,
∴∠BOC=90°+∠A,
(1)∵∠ABC=50°,∠ACB=60°,
∴∠A=180°﹣50°﹣60°=70°,
∴∠BOC=90°+×70°=125°;
(2)∠BOC=90°+∠A=125°;
(3)∠BOC=90°+n°.
【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
x
…
﹣3
﹣2
0
1
3
5
…
y
…
7
0
﹣8
﹣9
﹣5
7
…
成绩分
等级
人数
A
12
B
m
C
n
D
9
辽宁省辽阳市二中学教育协作团队2023年数学八年级第一学期期末质量检测模拟试题【含解析】: 这是一份辽宁省辽阳市二中学教育协作团队2023年数学八年级第一学期期末质量检测模拟试题【含解析】,共16页。
辽宁省辽阳市二中学教育协作团队2023-2024学年数学八上期末达标测试试题【含解析】: 这是一份辽宁省辽阳市二中学教育协作团队2023-2024学年数学八上期末达标测试试题【含解析】,共17页。试卷主要包含了在中,,则的长为,下列函数中,随增大而减小的是等内容,欢迎下载使用。
辽宁省辽阳市二中学教育协作团队2023-2024学年八年级数学第一学期期末综合测试模拟试题【含解析】: 这是一份辽宁省辽阳市二中学教育协作团队2023-2024学年八年级数学第一学期期末综合测试模拟试题【含解析】,共16页。试卷主要包含了菱形不具备的性质是,下列四个分式方程中无解的是等内容,欢迎下载使用。