|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析01
    辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析02
    辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析

    展开
    这是一份辽宁省铁岭市昌图县2022年中考数学模拟精编试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(  )

    A.a<0,b<0,c>0
    B.﹣=1
    C.a+b+c<0
    D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根
    2.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
    一个圆锥(接缝处不重叠),那么这个圆锥的高为

    A.6cm B.cm C.8cm D.cm
    3.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(    )
    A.15                               B.12                               C.9                        D.6
    4.如图,,且.、是上两点,,.若,,,则的长为( )

    A. B. C. D.
    5.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为(  )

    A.100° B.110° C.115° D.120°
    6.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    7.下列现象,能说明“线动成面”的是(  )
    A.天空划过一道流星
    B.汽车雨刷在挡风玻璃上刷出的痕迹
    C.抛出一块小石子,石子在空中飞行的路线
    D.旋转一扇门,门在空中运动的痕迹
    8.若关于的方程的两根互为倒数,则的值为(  )
    A. B.1 C.-1 D.0
    9.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是(  )

    A.27分钟 B.20分钟 C.13分钟 D.7分钟
    10.下列计算,正确的是(  )
    A. B.
    C.3 D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.
    12.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.
    13.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.

    14.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.
    15.抛物线y=(x﹣3)2+1的顶点坐标是____.
    16.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
    用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

    17.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
    (1)问题发现
    ①当θ=0°时,= ;
    ②当θ=180°时,= .
    (2)拓展探究
    试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
    (3)问题解决
    ①在旋转过程中,BE的最大值为 ;
    ②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .

    19.(5分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).

    20.(8分)如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
    (1)求证:ED为⊙O的切线;
    (2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.

    21.(10分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.

    22.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.

    (1)设四边形PQCB的面积为S,求S与t的关系式;
    (2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
    (3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
    23.(12分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
    方案一:买一件甲种商品就赠送一件乙种商品;
    方案二:按购买金额打八折付款.
    某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
    (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
    (2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
    24.(14分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:根据图像可得:a<0,b>0,c<0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=-1时有两个交点,即有两个不相等的实数根,则正确,故选D.
    2、B
    【解析】
    试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,
    ∴留下的扇形的弧长==12π,
    根据底面圆的周长等于扇形弧长,
    ∴圆锥的底面半径r==6cm,
    ∴圆锥的高为=3cm
    故选B.
    考点: 圆锥的计算.
    3、A
    【解析】
    根据三角函数的定义直接求解.
    【详解】
    在Rt△ABC中,∠C=90°,AC=9,
    ∵,
    ∴,
    解得AB=1.
    故选A
    4、D
    【解析】
    分析:
    详解:如图,

    ∵AB⊥CD,CE⊥AD,
    ∴∠1=∠2,
    又∵∠3=∠4,
    ∴180°-∠1-∠4=180°-∠2-∠3,
    即∠A=∠C.
    ∵BF⊥AD,
    ∴∠CED=∠BFD=90°,
    ∵AB=CD,
    ∴△ABF≌△CDE,
    ∴AF=CE=a,ED=BF=b,
    又∵EF=c,
    ∴AD=a+b-c.
    故选:D.
    点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
    5、B
    【解析】
    连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
    【详解】
    如下图,连接AD,BD,
    ∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
    ∵AB为直径,∴∠ADB=90°,
    ∴∠BAD=90°-20°=70°,
    ∴∠BCD=180°-70°=110°.
    故选B

    【点睛】
    本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
    6、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    7、B
    【解析】
    本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
    【详解】
    解:∵A、天空划过一道流星说明“点动成线”,
    ∴故本选项错误.
    ∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
    ∴故本选项正确.
    ∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
    ∴故本选项错误.
    ∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
    ∴故本选项错误.
    故选B.
    【点睛】
    本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
    8、C
    【解析】
    根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
    【详解】
    解:设、是的两根,
    由题意得:,
    由根与系数的关系得:,
    ∴k2=1,
    解得k=1或−1,
    ∵方程有两个实数根,
    则,
    当k=1时,,
    ∴k=1不合题意,故舍去,
    当k=−1时,,符合题意,
    ∴k=−1,
    故答案为:−1.
    【点睛】
    本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
    9、C
    【解析】
    先利用待定系数法求函数解析式,然后将y=35代入,从而求解.
    【详解】
    解:设反比例函数关系式为:,将(7,100)代入,得k=700,
    ∴,
    将y=35代入,
    解得;
    ∴水温从100℃降到35℃所用的时间是:20-7=13,
    故选C.
    【点睛】
    本题考查反比例函数的应用,利用数形结合思想解题是关键.
    10、B
    【解析】
    根据二次根式的加减法则,以及二次根式的性质逐项判断即可.
    【详解】
    解:∵=2,∴选项A不正确;
    ∵=2,∴选项B正确;
    ∵3﹣=2,∴选项C不正确;
    ∵+=3≠,∴选项D不正确.
    故选B.
    【点睛】
    本题主要考查了二次根式的加减法,以及二次根式的性质和化简,要熟练掌握,解答此题的关键是要明确:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.

    二、填空题(共7小题,每小题3分,满分21分)
    11、50°
    【解析】【分析】直接利用圆周角定理进行求解即可.
    【详解】∵弧AB所对的圆心角是100°,
    ∴弧AB所对的圆周角为50°,
    故答案为:50°.
    【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    12、1
    【解析】
    根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.
    【详解】
    ∵线段c是线段a和线段b的比例中项,
    ∴,
    解得(线段是正数,负值舍去),
    ∴,
    故答案为:1.
    【点睛】
    本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.
    13、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    14、-23≤y≤2
    【解析】
    先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.
    【详解】
    解:∵a=-1,
    ∴抛物线的开口向下,故有最大值,
    ∵对称轴x=-3,
    ∴当x=-3时y最大为2,
    当x=2时y最小为-23,
    ∴函数y的取值范围为-23≤y≤2,
    故答案为:-23≤y≤2.
    【点睛】
    本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.
    15、 (3,1)
    【解析】
    分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.
    详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).
    点睛:主要考查了抛物线顶点式的运用.
    16、
    【解析】
    分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
    详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
    ∵∠C+∠KDC=90°,∴∠C=∠HDA.
    ∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
    ∴CK:KD=HD:HA,∴CK:100=100:15,
    解得:CK=.
    故答案为:.
    点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
    17、﹣1
    【解析】
    连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.
    【详解】
    如图:

    连接DB,若Q点落在BD上,此时和最短,且为,
    设AP=x,则PD=1﹣x,PQ=x.
    ∵∠PDQ=45°,
    ∴PD=PQ,即1﹣x=,
    ∴x=﹣1,
    ∴AP=﹣1,
    ∴tan∠ABP==﹣1,
    故答案为:﹣1.
    【点睛】
    本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
    【解析】
    (1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
    【详解】
    解:(1)①当θ=0°时,
    在Rt△ABC中,AC=BC=2,
    ∴∠A=∠B=45°,AB=2,
    ∵AD=DE=AB=,
    ∴∠AED=∠A=45°,
    ∴∠ADE=90°,
    ∴DE∥CB,
    ∴,
    ∴,
    ∴,
    故答案为,
    ②当θ=180°时,如图1,

    ∵DE∥BC,
    ∴,
    ∴,
    即:,
    ∴,
    故答案为;
    (2)当0°≤θ<360°时,的大小没有变化,
    理由:∵∠CAB=∠DAE,
    ∴∠CAD=∠BAE,
    ∵,
    ∴△ADC∽△AEB,
    ∴;
    (3)①当点E在BA的延长线时,BE最大,
    在Rt△ADE中,AE=AD=2,
    ∴BE最大=AB+AE=2+2;
    ②如图2,

    当点E在BD上时,
    ∵∠ADE=90°,
    ∴∠ADB=90°,
    在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
    ∴BE=BD+DE=+,
    由(2)知,,
    ∴CD=+1,
    如图3,

    当点D在BE的延长线上时,
    在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
    ∴BE=BD﹣DE=﹣,
    由(2)知,,
    ∴CD=﹣1.
    故答案为 +1或﹣1.
    【点睛】
    此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
    19、(1)、(2)见解析(3)
    【解析】
    试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
    试题解析:(1)A(0,4)C(3,1)
    (2)如图所示:
    (3)根据勾股定理可得:AC=3,则.
    考点:图形的旋转、扇形的弧长计算公式.
    20、(1)见解析;(2)△ADF的面积是.
    【解析】
    试题分析:(1)连接OD,CD,求出∠BDC=90°,根据OE∥AB和OA=OC求出BE=CE,推出DE=CE,根据SSS证△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
    (2)过O作OM⊥AB于M,过F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根据sin∠BAC=,求出OM,根据cos∠BAC=,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可.
    试题解析:
    (1)证明:连接OD,CD,

    ∵AC是⊙O的直径,
    ∴∠CDA=90°=∠BDC,
    ∵OE∥AB,CO=AO,
    ∴BE=CE,
    ∴DE=CE,
    ∵在△ECO和△EDO中

    ∴△ECO≌△EDO,
    ∴∠EDO=∠ACB=90°,
    即OD⊥DE,OD过圆心O,
    ∴ED为⊙O的切线.
    (2)过O作OM⊥AB于M,过F作FN⊥AB于N,

    则OM∥FN,∠OMN=90°,
    ∵OE∥AB,
    ∴四边形OMFN是矩形,
    ∴FN=OM,
    ∵DE=4,OC=3,由勾股定理得:OE=5,
    ∴AC=2OC=6,
    ∵OE∥AB,
    ∴△OEC∽△ABC,
    ∴,
    ∴,
    ∴AB=10,
    在Rt△BCA中,由勾股定理得:BC==8,
    sin∠BAC=,
    即 ,
    OM==FN,
    ∵cos∠BAC=,
    ∴AM=
    由垂径定理得:AD=2AM=,
    即△ADF的面积是AD×FN=××=.
    答:△ADF的面积是.
    【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力.
    21、见解析
    【解析】
    易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
    【详解】
    在平行四边形ABCD中,AB∥CD,AB=CD
    ∴∠ABE=∠CDF,
    又AE⊥BD,CF⊥BD
    ∴△ABE≌△CDF(AAS),
    ∴AE=CF
    又∠AEF=∠CFE,EF=FE,
    ∴△AEF≌△CFE(SAS)
    ∴AF=CE.
    【点睛】
    此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
    22、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
    【解析】
    (1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
    (2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
    (3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
    【详解】
    解:(1)如图1,∵四边形ABCD是菱形,
    ∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
    ∴∠OAB=30°,
    ∵AB=20,
    ∴OB=10,AO=10,
    由题意得:AP=4t,
    ∴PQ=2t,AQ=2t,
    ∴S=S△ABC﹣S△APQ,
    =,
    = ,
    =﹣2t2+100(0<t<1);
    (2)如图2,在Rt△APM中,AP=4t,
    ∵点Q关于O的对称点为M,
    ∴OM=OQ,
    设PM=x,则AM=2x,
    ∴AP=x=4t,
    ∴x=,
    ∴AM=2PM=,
    ∵AM=AO+OM,
    ∴=10+10﹣2t,
    t=;
    答:当t为秒时,点P、M、N在一直线上;
    (3)存在,
    如图3,∵直线PN平分四边形APMN的面积,
    ∴S△APN=S△PMN,
    过M作MG⊥PN于G,
    ∴ ,
    ∴MG=AP,
    易得△APH≌△MGH,
    ∴AH=HM=t,
    ∵AM=AO+OM,
    同理可知:OM=OQ=10﹣2t,
    t=10=10﹣2t,
    t=.
    答:当t为秒时,使得直线PN平分四边形APMN的面积.

    【点睛】
    考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
    23、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
    【解析】
    (1)根据方案即可列出函数关系式;
    (2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
    解:(1) 得:;
    得:;
    (2)
    ,
    因为w是m的一次函数,k=-4<0,
    所以w随的增加而减小,m当m=20时,w取得最小值.
    即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
    24、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.
    【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;
    (2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;
    (3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.
    试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350
    即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;
    (2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);
    (3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1
    ∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.
    答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.
    点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.

    相关试卷

    2023-2024学年辽宁省铁岭市昌图县九年级(上)期中数学试卷(含解析): 这是一份2023-2024学年辽宁省铁岭市昌图县九年级(上)期中数学试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年辽宁省铁岭市昌图县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年辽宁省铁岭市昌图县九年级(上)期末数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年辽宁省铁岭市昌图县七年级(上)期末数学试卷(含解析): 这是一份2022-2023学年辽宁省铁岭市昌图县七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map