![内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析01](http://www.enxinlong.com/img-preview/2/3/13561144/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析02](http://www.enxinlong.com/img-preview/2/3/13561144/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析03](http://www.enxinlong.com/img-preview/2/3/13561144/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
内蒙古巴彦淖尔市名校2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,是一个工件的三视图,则此工件的全面积是( )
A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm2
2.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )
A.280×103 B.28×104 C.2.8×105 D.0.28×106
3.一、单选题
如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为( )
A.5 B.4 C.3 D.2
4.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为( )
A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣3
5.如图,在△ABC中,DE∥BC,若,则等于( )
A. B. C. D.
6.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )
A. B. C. D.
7.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
A.2π﹣ B.π+ C.π+2 D.2π﹣2
8.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0
9.下列计算正确的是( )
A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
10.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
11.剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是( )
A. B. C. D.
12.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
14.如图,的半径为,点,,,都在上,,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_____.(结果保留)
15.分解因式:4m2﹣16n2=_____.
16.化简:_____________.
17.计算:()0﹣=_____.
18.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
20.(6分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
21.(6分)(5分)计算:.
22.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
(1)求证:DE是⊙O的切线;
(2)求EF的长.
23.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
25.(10分)计算:2tan45°-(-)º-
26.(12分)如图:求作一点P,使,并且使点P到的两边的距离相等.
27.(12分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
求证:AB=DE
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.
【详解】
圆锥的底面圆的直径为12cm,高为8cm,
所以圆锥的母线长==10,
所以此工件的全面积=π×62+×2π×6×10=96π(cm2).
故答案选C.
【点睛】
本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.
2、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将280000用科学记数法表示为2.8×1.故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转 60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=1,
∴BE=1.
故选B.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.
4、A
【解析】
分析:
详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得: ,
即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.
点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.
5、C
【解析】
试题解析::∵DE∥BC,
∴,
故选C.
考点:平行线分线段成比例.
6、B
【解析】
分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.
详解:由俯视图及其小正方体的分布情况知,
该几何体的主视图为:
该几何体的左视图为:
故选:B.
点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
7、D
【解析】
分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.
详解:连接CD.
∵∠C=90°,AC=2,AB=4,
∴BC==2.
∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC
=
=
.
故选:D.
点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.
8、C
【解析】
根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.
【详解】
解:由数轴上点的位置,得
a<﹣4<b<0<c<1<d.
A、a<﹣4,故A不符合题意;
B、bd<0,故B不符合题意;
C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;
D、b+c<0,故D不符合题意;
故选:C.
【点睛】
本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键
9、D
【解析】
根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
【详解】
∵3a﹣2a=a,∴选项A不正确;
∵a2+a5≠a7,∴选项B不正确;
∵(ab)3=a3b3,∴选项C不正确;
∵a2•a4=a6,∴选项D正确.
故选D.
【点睛】
本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.
10、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
11、C
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、既不是中心对称图形,也不是轴对称图形,故本选项正确;
D、是中心对称图形,不是轴对称图形,故本选项错误,
故选C.
【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
12、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.
详解:设方程的另一个根为m,
根据题意得:1+m=3,
解得:m=1.
故答案为1.
点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
14、.
【解析】
根据题意先利用旋转的性质得到∠BOD=120°,则∠AOD=150°,然后根据弧长公式计算即可.
【详解】
解:∵扇形AOB绕点O顺时针旋转120°后恰好与扇形COD重合,
∴∠BOD=120°,
∴∠AOD=∠AOB+∠BOD=30°+120°=150°,
∴的长=.
故答案为:.
【点睛】
本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.
15、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
16、
【解析】
根据分式的运算法则即可求解.
【详解】
原式=.
故答案为:.
【点睛】
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
17、-1
【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.
【详解】
由分析可得:()0﹣=1-2=﹣1.
【点睛】
熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.
18、1.
【解析】
∵∠AOB=∠COD,
∴S阴影=S△AOB.
∵四边形ABCD是平行四边形,
∴OA=AC=×1=2.
∵AB⊥AC,
∴S阴影=S△AOB=OA•AB=×2×1=1.
【点睛】
本题考查了扇形面积的计算.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)100;(2)作图见解析;(3)1.
【解析】
试题分析:(1)根据百分比= 计算即可;
(2)求出“打球”和“其他”的人数,画出条形图即可;
(3)用样本估计总体的思想解决问题即可.
试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
故答案为100;
(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
20、200名初中毕业生的视力情况 200 60 0.05
【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
(3)求出样本中视力正常所占百分比乘以5000即可得解.
【详解】
(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
故答案为200;
(2)a=200×0.3=60,b=10÷200=0.05,
补全频数分布图,如图所示,
故答案为60,0.05;
(3)根据题意得:5000×=3500(人),
则全区初中毕业生中视力正常的学生有估计有3500人.
21、.
【解析】
试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.
试题解析:原式==.
考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.
22、 (1)见解析;(2) .
【解析】
(1)连接OD,根据切线的判定方法即可求出答案;
(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
【详解】
(1)连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=∠B=60°,
∵OD=OB,
∴△ODB是等边三角形,
∴∠ODB=60°
∴∠ODB=∠C,
∴OD∥AC,
∴DE⊥AC
∴OD⊥DE,
∴DE是⊙O的切线
(2)∵OD∥AC,点O是AB的中点,
∴OD为△ABC的中位线,
∴BD=CD=2
在Rt△CDE中,
∠C=60°,
∴∠CDE=30°,
∴CE=CD=1
∴AE=AC﹣CE=4﹣1=3
在Rt△AEF中,
∠A=60°,
∴EF=AE•sinA=3×sin60°=
【点睛】
本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
23、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
【解析】
(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
(2)根据图形得出点的坐标;
(3)根据弧长的计算公式求出答案.
【详解】
解:(1)△A1B1C如图所示.
(2)A1(0,6).
(3)
.
【点睛】
本题考查了旋转作图和弧长的计算.
24、 (1) ;(2) 当m=2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2)
【解析】
(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;
(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:y=−x+2,设点M(m,−m+2),Q(m,m2−m−2),可得MQ=−m2+m+4,根据平行四边形的性质可得QM=CD=4,即−m2+m+4=4可解得m=2;
(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),②当∠DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2).
【详解】
(1)由题意知,
∵点A(﹣1,0),B(4,0)在抛物线y=x2+bx+c上,
∴解得:
∴所求抛物线的解析式为
(2)由(1)知抛物线的解析式为,令x=0,得y=﹣2
∴点C的坐标为C(0,﹣2)
∵点D与点C关于x轴对称
∴点D的坐标为D(0,2)
设直线BD的解析式为:y=kx+2且B(4,0)
∴0=4k+2,解得:
∴直线BD的解析式为:
∵点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q
∴可设点M,Q
∴MQ=
∵四边形CQMD是平行四边形
∴QM=CD=4,即=4
解得:m1=2,m2=0(舍去)
∴当m=2时,四边形CQMD为平行四边形
(3)由题意,可设点Q且B(4,0)、D(0,2)
∴BQ2=
DQ2=
BD2=20
①当∠BDQ=90°时,则BD2+DQ2=BQ2,
∴
解得:m1=8,m2=﹣1,此时Q1(8,18),Q2(﹣1,0)
②当∠DBQ=90°时,则BD2+BQ2=DQ2,
∴
解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)
∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).
【点睛】
此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.
25、2-
【解析】
先求三角函数,再根据实数混合运算法计算.
【详解】
解:原式=2×1-1-=1+1-=2-
【点睛】
此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.
26、见解析
【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.
【详解】
如图所示:P点即为所求.
【点睛】
本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.
27、证明见解析.
【解析】
证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份内蒙古乌海市名校2021-2022学年中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了若等式,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
2022年内蒙古巴彦淖尔市磴口县中考数学考试模拟冲刺卷含解析: 这是一份2022年内蒙古巴彦淖尔市磴口县中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中,正确的个数共有,下列运算正确的是等内容,欢迎下载使用。
2022届内蒙古巴彦淖尔市三县五校中考数学考试模拟冲刺卷含解析: 这是一份2022届内蒙古巴彦淖尔市三县五校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了下列计算正确的是,的整数部分是,对于反比例函数y=等内容,欢迎下载使用。