|试卷下载
终身会员
搜索
    上传资料 赚现金
    内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析01
    内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析02
    内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析

    展开
    这是一份内蒙古自治区满洲里市重点达标名校2021-2022学年中考数学对点突破模拟试卷含解析,共26页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )

    A.4个 B.5个 C.6个 D.7个
    2.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于(  )

    A. B. C.2 D.
    3.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
    A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
    4.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

    A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
    5.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
    A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
    6.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是(  )

    A. B. C. D.
    7.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
    A.平均数 B.中位数 C.众数 D.方差
    8.下列说法中,正确的是(  )
    A.不可能事件发生的概率为0
    B.随机事件发生的概率为
    C.概率很小的事件不可能发生
    D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
    9.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )

    A. B. C. D.
    10.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )

    A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
    11.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(  )
    A.1,2,3 B.1,1, C.1,1, D.1,2,
    12.2016的相反数是( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .

    14.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为______.

    15.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为_____cm1.(结果保留π)

    16.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    17.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.

    18.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
    (1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
    (2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
    (3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.

    20.(6分)解方程:.
    21.(6分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
    品种
    A
    B
    原来的运费
    45
    25
    现在的运费
    30
    20
    (1)求每次运输的农产品中A,B产品各有多少件;
    (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
    22.(8分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
    (1)求证:四边形是菱形;
    (2)联结AE,又知AC⊥ED,求证: .

    23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
    销售单价x(元/kg)

    120

    130



    180

    每天销量y(kg)

    100

    95



    70

    设y与x的关系是我们所学过的某一种函数关系.
    (1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
    (2)当销售单价为多少时,销售利润最大?最大利润是多少?
    24.(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
    (1)求抛物y=x2+bx+c线的解析式.
    (2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
    (3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).

    25.(10分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
    (1)求证:DF⊥AC;
    (2)求tan∠E的值.

    26.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.

    (1)求证:四边形AECF为菱形;
    (2)若AB=4,BC=8,求菱形AECF的周长.
    27.(12分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
    (1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
    (2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
    【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:

    则搭成这个几何体的小正方体最少有5个,
    故选B.
    【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
    【详解】
    请在此输入详解!
    【点睛】
    请在此输入点睛!
    2、D
    【解析】
    根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
    【详解】
    ∵∠DAB=∠DEB,
    ∴tan∠DEB= tan∠DAB=,
    故选D.
    【点睛】
    本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
    3、A
    【解析】
    ∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
    当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
    解得b≥.
    当抛物线与x轴的交点的横坐标均大于等于0时,
    设抛物线与x轴的交点的横坐标分别为x1,x2,
    则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
    ∴此种情况不存在.
    ∴b≥.
    4、D
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
    【详解】
    ∵直线EF∥GH,
    ∴∠2=∠ABC+∠1=30°+20°=50°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    5、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将度55000用科学记数法表示为5.5×1.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、A
    【解析】
    ∵∠C=90°,BC=2cm,∠A=30°,
    ∴AB=4,
    由勾股定理得:AC=2,
    ∵四边形DEFG为矩形,∠C=90,
    ∴DE=GF=2,∠C=∠DEF=90°,
    ∴AC∥DE,
    此题有三种情况:
    (1)当0<x<2时,AB交DE于H,如图

    ∵DE∥AC,
    ∴,
    即,
    解得:EH=x,
    所以y=•x•x=x2,
    ∵x 、y之间是二次函数,
    所以所选答案C错误,答案D错误,
    ∵a=>0,开口向上;
    (2)当2≤x≤6时,如图,

    此时y=×2×2=2,
    (3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,

    BF=x﹣6,与(1)类同,同法可求FN=X﹣6,
    ∴y=s1﹣s2,
    =×2×2﹣×(x﹣6)×(X﹣6),
    =﹣x2+6x﹣16,
    ∵﹣<0,
    ∴开口向下,
    所以答案A正确,答案B错误,
    故选A.
    点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.
    7、B
    【解析】
    总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
    【详解】
    要想知道自己是否入选,老师只需公布第五名的成绩,
    即中位数.
    故选B.
    8、A
    【解析】
    试题分析:不可能事件发生的概率为0,故A正确;
    随机事件发生的概率为在0到1之间,故B错误;
    概率很小的事件也可能发生,故C错误;
    投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
    故选A.
    考点:随机事件.
    9、D
    【解析】
    过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
    【详解】
    过O作直线OE⊥AB,交CD于F,
    ∵AB//CD,
    ∴OF⊥CD,OE=12,OF=2,
    ∴△OAB∽△OCD,
    ∵OE、OF分别是△OAB和△OCD的高,
    ∴,即,
    解得:CD=1.

    故选D.
    【点睛】
    本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.
    10、A
    【解析】
    观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
    【详解】
    解:依题意,得:b=a+1,c=a+7,d=a+1.
    A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
    ∴a﹣d≠b﹣c,选项A符合题意;
    B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
    ∴a+c+2=b+d,选项B不符合题意;
    C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
    ∴a+b+14=c+d,选项C不符合题意;
    D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
    ∴a+d=b+c,选项D不符合题意.
    故选:A.
    【点睛】
    考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
    11、D
    【解析】
    根据三角形三边关系可知,不能构成三角形,依此即可作出判定; 
    B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定; 
    C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
    D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
    【详解】
    ∵1+2=3,不能构成三角形,故选项错误; 
    B、∵12+12=()2,是等腰直角三角形,故选项错误; 
    C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误; 
    D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
    故选D.
    12、C
    【解析】
    根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.

    考点:扇形的面积计算.
    14、1
    【解析】
    试题解析:∵正方体的展开图中对面不存在公共部分,
    ∴B与-1所在的面为对面.
    ∴B内的数为1.
    故答案为1.
    15、
    【解析】
    试题分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.
    试题解析:如图所示:连接BO,CO,

    ∵正六边形ABCDEF内接于⊙O,
    ∴AB=BC=CO=1,∠ABC=110°,△OBC是等边三角形,
    ∴CO∥AB,
    在△COW和△ABW中

    ∴△COW≌△ABW(AAS),
    ∴图中阴影部分面积为:S扇形OBC=.
    考点:正多边形和圆.
    16、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
    17、10<a≤10.
    【解析】
    根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.
    【详解】
    ∵M是AB的中点,MC=MA=5,
    ∴△ABC为直角三角形,AB=10;
    ∴a=AC+BC>AB=10;
    令AC=x、BC=y.
    ∴,
    ∴xy=,
    ∴x、y是一元二次方程z2-az+=0的两个实根,
    ∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.
    故答案为10<a≤10.
    【点睛】
    本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.
    18、1
    【解析】
    根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
    【详解】
    根据题意,作△EFC,

    树高为CD,且∠ECF=90°,ED=3,FD=12,
    易得:Rt△EDC∽Rt△DCF,
    有,即DC2=ED×FD,
    代入数据可得DC2=31,
    DC=1,
    故答案为1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
    【解析】
    (1)直接利用线段AB的“等长点”的条件判断;
    (2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
    (3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
    【详解】
    (1)∵A(0,3),B(,0),
    ∴AB=2,
    ∵点C1(﹣2,3+2),
    ∴AC1==2,
    ∴AC1=AB,
    ∴C1是线段AB的“等长点”,
    ∵点C2(0,﹣2),
    ∴AC2=5,BC2==,
    ∴AC2≠AB,BC2≠AB,
    ∴C2不是线段AB的“等长点”,
    ∵点C3(3+,﹣),
    ∴BC3==2,
    ∴BC3=AB,
    ∴C3是线段AB的“等长点”;
    故答案为C1,C3;
    (2)如图1,

    在Rt△AOB中,OA=3,OB=,
    ∴AB=2,tan∠OAB==,
    ∴∠OAB=30°,
    当点D在y轴左侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠DAB﹣∠BAO=30°,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB,
    ∴D(﹣,0),
    ∴m=,n=0,
    当点D在y轴右侧时,
    ∵∠DAB=60°,
    ∴∠DAO=∠BAO+∠DAB=90°,
    ∴n=3,
    ∵点D(m,n)是线段AB的“等长点”,
    ∴AD=AB=2,
    ∴m=2;
    ∴D(,3)
    (3)如图2,

    ∵直线y=kx+3k=k(x+3),
    ∴直线y=kx+3k恒过一点P(﹣3,0),
    ∴在Rt△AOP中,OA=3,OP=3,
    ∴∠APO=30°,
    ∴∠PAO=60°,
    ∴∠BAP=90°,
    当PF与⊙B相切时交y轴于F,
    ∴PA切⊙B于A,
    ∴点F就是直线y=kx+3k与⊙B的切点,
    ∴F(0,﹣3),
    ∴3k=﹣3,
    ∴k=﹣,
    当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
    ∴∠AEG=∠OPG=90°,
    ∴△AEG∽△POG,
    ∴,
    ∴=,解得:k=或k=(舍去)
    ∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
    ∴﹣≤k≤,
    【点睛】
    此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点.
    20、x=,x=﹣2
    【解析】
    方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】

    则2x(x+1)=3(1﹣x),
    2x2+5x﹣3=0,
    (2x﹣1)(x+3)=0,
    解得:x1=,x2=﹣3,
    检验:当x=,x=﹣2时,2(x+1)(1﹣x)均不等于0,
    故x=,x=﹣2都是原方程的解.
    【点睛】
    本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.
    21、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
    【解析】
    (1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
    【详解】
    解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
    根据题意得:

    解得:,
    答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
    增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
    根据题意得:W=30(10+m)+20(38-m)=10m+1060,
    由题意得:38-m≤2(10+m),
    解得:m≥6,
    即6≤m≤8,
    ∵一次函数W随m的增大而增大
    ∴当m=6时,W最小=1120,
    答:产品件数增加后,每次运费最少需要1120元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
    22、 (1)见解析;(2)见解析
    【解析】
    分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
    再由平行线分线段成比例定理得到:, ,=,即可得到结论;
    (2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
    详解:(1)∵ ∥∥,∴四边形是平行四边形.
    ∵∥,∴.
    同理 .
    得:=
    ∵,∴.
    ∴四边形是菱形.
    (2)连接,与交于点.
    ∵四边形是菱形,∴⊥.
    得 .同理.
    ∴.
    又∵是公共角,∴△∽△.
    ∴.
    ∴.

    点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
    23、 (1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.
    【解析】
    试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;
    (2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.
    试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;
    (2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=,∵a=<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).
    答:当销售单价为180元时,销售利润最大,最大利润是7000元.
    24、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
    【解析】
    (1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
    (2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
    (3)由题得出tanBAO=,分情况讨论求得F,H坐标.
    【详解】
    (1)把点、代入得,
    解得,,
    ∴抛物线的解析式为.
    (2)由得,∴顶点的坐标为,
    把代入得解得,∴直线解析式为,
    设点,代入得,∴得,
    设点,代入得,∴得,
    由于直线与轴、轴分别交于点、
    ∴易得、,
    ∴,
    ∴,∵点在直线上,
    ∴,
    ∴,即,
    ∵,
    ∴以点为圆心,半径长为4的圆与直线相离.
    (3)点、的坐标分别为、或、或、.
    C(-1,-1),A(0,6),B(1,3)
    可得tanBAO=,
    情况1:tanCF1M= = , CF1=9,
    M F1=6,H1F1=5, F1(8,8),H1(3,3);
    情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
    情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
    【点睛】
    本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
    25、(1)证明见解析;(2)tan∠CBG=.
    【解析】
    (1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
    (2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
    【详解】
    解:(1)证明:连接OD,CD,
    ∵BC是⊙O的直径,
    ∴∠BDC=90°,
    ∴CD⊥AB,
    ∵AC=BC,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线
    ∴OD∥AC,
    ∵DF为⊙O的切线,
    ∴OD⊥DF,
    ∴DF⊥AC;
    (2)解:如图,连接BG,
    ∵BC是⊙O的直径,
    ∴∠BGC=90°,
    ∵∠EFC=90°=∠BGC,
    ∴EF∥BG,
    ∴∠CBG=∠E,
    Rt△BDC中,∵BD=3,BC=5,
    ∴CD=4,
    ∵S△ABC=,即6×4=5BG,
    ∴BG=,
    由勾股定理得:CG=,
    ∴tan∠CBG=tan∠E=.

    【点睛】
    本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
    26、(1)见解析;(2)1
    【解析】
    (1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
    (2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
    【详解】
    (1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
    在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
    又∵OA=OC,∴四边形AECF是平行四边形.
    又∵EF⊥AC,∴平行四边形AECF是菱形;
    (2)设AF=x.
    ∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.

    【点睛】
    本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
    27、(1)见解析;(2)是7.3米
    【解析】
    (1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解.
    【详解】
    解:(1)如下图,
    图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;
    图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;

    (2)设AD=x,在Rt△ABD中,∠ABD=45°,
    ∴BD=AD=x,
    ∴CD=20﹣x.
    ∵tan∠ACD=,
    即tan30°=,
    ∴x==10(﹣1)≈7.3(米).
    答:路灯A离地面的高度AD约是7.3米.
    【点睛】
    解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可.

    相关试卷

    2022年安阳市重点达标名校中考数学对点突破模拟试卷含解析: 这是一份2022年安阳市重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了下列各数中是有理数的是等内容,欢迎下载使用。

    2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年浙江省杭州北干重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。

    2021-2022学年山西省永济市重点达标名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年山西省永济市重点达标名校中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,已知a=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map