|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省费县2021-2022学年中考数学猜题卷含解析
    立即下载
    加入资料篮
    山东省费县2021-2022学年中考数学猜题卷含解析01
    山东省费县2021-2022学年中考数学猜题卷含解析02
    山东省费县2021-2022学年中考数学猜题卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省费县2021-2022学年中考数学猜题卷含解析

    展开
    这是一份山东省费县2021-2022学年中考数学猜题卷含解析,共22页。试卷主要包含了图中三视图对应的正三棱柱是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
    A.2:3 B.3:2 C.4:9 D.9:4
    2.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

    A. B.2 C. D.2
    3.小明解方程的过程如下,他的解答过程中从第(  )步开始出现错误.
    解:去分母,得1﹣(x﹣2)=1①
    去括号,得1﹣x+2=1②
    合并同类项,得﹣x+3=1③
    移项,得﹣x=﹣2④
    系数化为1,得x=2⑤
    A.① B.② C.③ D.④
    4.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    5.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为(  )

    A.1 B.2 C.3 D.8
    6.如果t>0,那么a+t与a的大小关系是( )
    A.a+t>a B.a+t 7.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为(  )
    A.0.88×105 B.8.8×104 C.8.8×105 D.8.8×106
    8.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    9.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )

    A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
    10.已知点,与点关于轴对称的点的坐标是( )
    A. B. C. D.
    11.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )

    A.2﹣ B.1 C. D.﹣l
    12.若分式的值为0,则x的值为(  )
    A.-2 B.0 C.2 D.±2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.中,,,高,则的周长为______。
    14.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.
    15.尺规作图:过直线外一点作已知直线的平行线.
    已知:如图,直线l与直线l外一点P.
    求作:过点P与直线l平行的直线.

    作法如下:
    (1)在直线l上任取两点A、B,连接AP、BP;
    (2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
    (3)过点P、M作直线;
    (4)直线PM即为所求.

    请回答:PM平行于l的依据是_____.
    16.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.

    17.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.

    18.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是(  )
    A. B. C. D.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
    车型
    起步公里数
    起步价格
    超出起步公里数后的单价
    普通燃油型
    3
    13元
    2.3元/公里
    纯电动型
    3
    8元
    2元/公里
    张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
    20.(6分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
    (1)求抛物线的表达式;
    (2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
    (3)如图2,连接BC,PB,PC,设△PBC的面积为S.
    ①求S关于t的函数表达式;
    ②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

    21.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.

    (1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.
    22.(8分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
    (1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
    (2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。
    23.(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)

    24.(10分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

    25.(10分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    26.(12分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
    画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
    27.(12分)如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
    【详解】
    ∵△ABC与△DEF相似,相似比为2:3,
    ∴这两个三角形的面积比为4:1.
    故选C.
    【点睛】
    此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
    2、C
    【解析】
    通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.
    【详解】
    过点D作DE⊥BC于点E
    .
    由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
    ∴AD=a.
    ∴DE•AD=a.
    ∴DE=1.
    当点F从D到B时,用s.
    ∴BD=.
    Rt△DBE中,
    BE=,
    ∵四边形ABCD是菱形,
    ∴EC=a-1,DC=a,
    Rt△DEC中,
    a1=11+(a-1)1.
    解得a=.
    故选C.
    【点睛】
    本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.
    3、A
    【解析】
    根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
    【详解】
    =1,
    去分母,得1-(x-2)=x,故①错误,
    故选A.
    【点睛】
    本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
    4、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、B
    【解析】
    连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可.
    【详解】
    解:
    由题意得,当点P为劣弧AB的中点时,PQ最小,
    连接OP、OA,
    由垂径定理得,点Q在OP上,AQ=AB=4,
    在Rt△AOB中,OQ==3,
    ∴PQ=OP-OQ=2,
    故选:B.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    6、A
    【解析】
    试题分析:根据不等式的基本性质即可得到结果.
    t>0,
    ∴a+t>a,
    故选A.
    考点:本题考查的是不等式的基本性质
    点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.
    7、B
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,
    ∵88000一共5位,∴88000=8.88×104. 故选B.
    考点:科学记数法.
    8、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    9、B
    【解析】
    【分析】由已知可证△ABO∽CDO,故 ,即.
    【详解】由已知可得,△ABO∽CDO,
    所以, ,
    所以,,
    所以,AB=5.4
    故选B
    【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
    10、C
    【解析】
    根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
    【详解】
    解:点,与点关于轴对称的点的坐标是,
    故选:C.
    【点睛】
    本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    11、D
    【解析】
    ∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
    ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
    ∴AD⊥BC,B′C′⊥AB,
    ∴AD=BC=1,AF=FC′=AC′=1,
    ∴DC′=AC′-AD=-1,
    ∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
    故选D.

    【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
    12、C
    【解析】
    由题意可知:,
    解得:x=2,
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、32或42
    【解析】
    根据题意,分两种情况讨论:①若∠ACB是锐角,②若∠ACB是钝角,分别画出图形,利用勾股定理,即可求解.
    【详解】
    分两种情况讨论:
    ①若∠ACB是锐角,如图1,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9+5+15+13=42,
    ②若∠ACB是钝角,如图2,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9-5+15+13=32,
    故答案是:32或42.

    【点睛】
    本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.
    14、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是.
    故答案为.
    【点睛】
    本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【解析】
    利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
    【详解】
    解:由作法得PM=AB,BM=PA,
    ∴四边形ABMP为平行四边形,
    ∴PM∥AB.
    故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
    【点睛】
    本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
    16、1
    【解析】
    根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
    【详解】
    解:∵P,Q分别为AB,AC的中点,
    ∴PQ∥BC,PQ=BC,
    ∴△APQ∽△ABC,
    ∴ =()2=,
    ∵S△APQ=1,
    ∴S△ABC=4,
    ∴S四边形PBCQ=S△ABC﹣S△APQ=1,
    故答案为1.
    【点睛】
    本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    17、
    【解析】
    解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案为.

    点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    18、A
    【解析】
    该班男生有x人,女生有y人.根据题意得:,
    故选D.
    考点:由实际问题抽象出二元一次方程组.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、8.2 km
    【解析】
    首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.
    【详解】
    解:设小明家到单位的路程是x千米.
    依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.
    解得:x=8.2
    答:小明家到单位的路程是8.2千米.
    【点睛】
    本题考查一元一次方程的应用,找准等量关系是解题关键.
    20、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
    【解析】
    【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
    (2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
    (1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
    ②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
    【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,
    得,解得:,
    ∴抛物线的表达式为y=﹣x2+2x+1;
    (2)在图1中,连接PC,交抛物线对称轴l于点E,
    ∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,
    ∴抛物线的对称轴为直线x=1,
    当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
    ∵抛物线的表达式为y=﹣x2+2x+1,
    ∴点C的坐标为(0,1),点P的坐标为(2,1),
    ∴点M的坐标为(1,6);
    当t≠2时,不存在,理由如下:
    若四边形CDPM是平行四边形,则CE=PE,
    ∵点C的横坐标为0,点E的横坐标为0,
    ∴点P的横坐标t=1×2﹣0=2,
    又∵t≠2,
    ∴不存在;
    (1)①在图2中,过点P作PF∥y轴,交BC于点F.
    设直线BC的解析式为y=mx+n(m≠0),
    将B(1,0)、C(0,1)代入y=mx+n,
    得,解得:,
    ∴直线BC的解析式为y=﹣x+1,
    ∵点P的坐标为(t,﹣t2+2t+1),
    ∴点F的坐标为(t,﹣t+1),
    ∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,
    ∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
    ②∵﹣<0,
    ∴当t=时,S取最大值,最大值为.
    ∵点B的坐标为(1,0),点C的坐标为(0,1),
    ∴线段BC=,
    ∴P点到直线BC的距离的最大值为,
    此时点P的坐标为(,).

    【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
    21、(1)证明略;(2)BC=,BF=.
    【解析】
    试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;
    (2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,
    过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.
    试题解析:

    (1)证明:连结AE.∵AB是⊙O的直径, ∴∠AEB=90°,∴∠1+∠2=90°.
    ∵BF是⊙O的切线,∴BF⊥AB, ∴∠CBF +∠2=90°.∴∠CBF =∠1.
    ∵AB=AC,∠AEB=90°, ∴∠1=∠CAB.
    ∴∠CBF=∠CAB.

    (2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=.
    ∵∠AEB=90°,AB=5. ∴BE=AB·sin∠1=.
    ∵AB=AC,∠AEB=90°, ∴BC=2BE=.
    在Rt△ABE中,由勾股定理得.
    ∴sin∠2=,cos∠2=.
    在Rt△CBG中,可求得GC=4,GB=2. ∴AG=3.
    ∵GC∥BF, ∴△AGC∽△ABF. ∴,
    ∴.
    考点:切线的性质,相似的性质,勾股定理.
    22、(1) ; (2) .
    【解析】
    (1)根据概率=所求情况数与总情况数之比代入解得即可.
    (2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
    【详解】
    (1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
    (2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):

    由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
    【点睛】
    本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.
    23、公路的宽为20.5米.
    【解析】
    作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
    【详解】
    解:如图,过点C作CD⊥AE于点D,

    设公路的宽CD=x米,
    ∵∠CBD=45°,
    ∴BD=CD=x,
    在Rt△ACD中,∵∠CAE=30°,
    ∴tan∠CAD==,即=,
    解得:x=≈20.5(米),
    答:公路的宽为20.5米.
    【点睛】
    本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
    24、观景亭D到南滨河路AC的距离约为248米.
    【解析】
    过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
    【详解】
    过点D作DE⊥AC,垂足为E,设BE=x,
    在Rt△DEB中,tan∠DBE=,
    ∵∠DBC=65°,
    ∴DE=xtan65°.
    又∵∠DAC=45°,
    ∴AE=DE.
    ∴132+x=xtan65°,
    ∴解得x≈115.8,
    ∴DE≈248(米).
    ∴观景亭D到南滨河路AC的距离约为248米.

    25、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    26、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10
    【解析】
    分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
    本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)

    (2)如图,△B为所求, (1,0),
    △B 的面积:
    6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,
    27、OD=6.
    【解析】
    (1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
    【详解】
    在△AOB与△COD中,

    ∴△AOB~△COD,
    ∴,
    ∴,
    ∴OD=6.
    【点睛】
    该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.

    相关试卷

    山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析: 这是一份山东省淄博沂源县联考2021-2022学年中考数学猜题卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    山东省安丘市重点名校2021-2022学年中考数学猜题卷含解析: 这是一份山东省安丘市重点名校2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,计算的结果是,下列说法正确的是,定义等内容,欢迎下载使用。

    2021-2022学年山东省王浩屯中学中考数学猜题卷含解析: 这是一份2021-2022学年山东省王浩屯中学中考数学猜题卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map