山东省德州市经开区重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
2.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
3.若,则的值为( )
A.﹣6 B.6 C.18 D.30
4.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A. B. C. D.
5.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b
A.2个 B.3个 C.4个 D.5个
6.如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )
A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)
7.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
8.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110° B.120° C.125° D.135°
9.关于的不等式的解集如图所示,则的取值是
A.0 B. C. D.
10.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为( )
A.(0,1) B.(0,2) C. D.(0,3)
二、填空题(共7小题,每小题3分,满分21分)
11.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.
12.计算:(π﹣3)0+(﹣)﹣1=_____.
13.抛物线y=x2+2x+m﹣1与x轴有交点,则m的取值范围是_____.
14.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
15.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.
16.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.
17.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.
三、解答题(共7小题,满分69分)
18.(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?
19.(5分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.
20.(8分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.
21.(10分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
22.(10分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G, GB=GC.
(1)求证:四边形ABCD是矩形;
(1)若△GEF的面积为1.
①求四边形BCFE的面积;
②四边形ABCD的面积为 .
23.(12分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.
① 若该公司当月卖出3部汽车,则每部汽车的进价为 万元;
② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)
24.(14分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.
(1)利用直尺和圆规在图1确定点P,使得PM=PN;
(2)设OM=x,ON=x+4,
①若x=0时,使P、M、N构成等腰三角形的点P有 个;
②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
2、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
3、B
【解析】
试题分析:∵,即,∴原式==
===﹣12+18=1.故选B.
考点:整式的混合运算—化简求值;整体思想;条件求值.
4、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
锥形瓶从上面往下看看到的是两个同心圆.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
5、B
【解析】
根据二次函数的图象与性质判断即可.
【详解】
①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
②对称轴为直线x=-1,,即b=2a,
所以b-2a=1.故②错误;
③由抛物线的性质可知,当x=-1时,y有最小值,
即a-b+c<(),
即a﹣b<m(am+b)(m≠﹣1),
故③正确;
④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
⑤由图像可得,当x=2时,y>1,
即: 4a+2b+c>1,
故⑤正确.
故正确选项有③④⑤,
故选B.
【点睛】
本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.
6、D
【解析】
分析:作BC⊥x轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A′与点B重合,于是可得点A′的坐标.
详解:作BC⊥x轴于C,如图,
∵△OAB是边长为4的等边三角形
∴
∴A点坐标为(−4,0),O点坐标为(0,0),
在Rt△BOC中,
∴B点坐标为
∵△OAB按顺时针方向旋转,得到△OA′B′,
∴
∴点A′与点B重合,即点A′的坐标为
故选D.
点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.
7、B
【解析】
易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
【详解】
若点E在BC上时,如图
∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
∴∠CFE=∠AEB,
∵在△CFE和△BEA中,
,
∴△CFE∽△BEA,
由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
∴,
当y=时,代入方程式解得:x1=(舍去),x2=,
∴BE=CE=1,∴BC=2,AB=,
∴矩形ABCD的面积为2×=5;
故选B.
【点睛】
本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
8、D
【解析】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
9、D
【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
【详解】
解:不等式,
解得x<,
由数轴可知,
所以,
解得;
故选:.
【点睛】
本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
10、B
【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
【详解】
由,解得 或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).
【点睛】
本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
二、填空题(共7小题,每小题3分,满分21分)
11、15
【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.
详解:∵
当y=127时, 解得:x=43;
当y=43时,解得:x=15;
当y=15时, 解得 不符合条件.
则输入的最小正整数是15.
故答案为15.
点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
12、-1
【解析】
先计算0指数幂和负指数幂,再相减.
【详解】
(π﹣3)0+(﹣)﹣1,
=1﹣3,
=﹣1,
故答案是:﹣1.
【点睛】
考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
13、m≤1.
【解析】
由抛物线与x轴有交点可得出方程x1+1x+m-1=0有解,利用根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出结论.
【详解】
∴关于x的一元二次方程x1+1x+m−1=0有解,
∴△=11−4(m−1)=8−4m≥0,
解得:m≤1.
故答案为:m≤1.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点,解题的关键是熟练的掌握抛物线与坐标轴的交点.
14、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
15、80
【解析】
【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
【详解】由图可知AQI在0~50的频数为10,
所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
故答案为80
【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
16、这一天的最高气温约是26°
【解析】
根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
【详解】
解:根据图象可得这一天的最高气温约是26°,
故答案为:这一天的最高气温约是26°.
【点睛】
本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
17、4.1
【解析】
解:如图所示:∵四边形ABCD是矩形,
∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
根据题意得:△ABP≌△EBP,
∴EP=AP,∠E=∠A=90°,BE=AB=1,
在△ODP和△OEG中,
,
∴△ODP≌△OEG(ASA),
∴OP=OG,PD=GE,
∴DG=EP,
设AP=EP=x,则PD=GE=6﹣x,DG=x,
∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
根据勾股定理得:BC2+CG2=BG2,
即62+(1﹣x)2=(x+2)2,
解得:x=4.1,
∴AP=4.1;
故答案为4.1.
三、解答题(共7小题,满分69分)
18、(1)的进价是元,的进价是元;(2)至少购进类玩具个.
【解析】
(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;
(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.
【详解】
解:(1)设的进价为元,则的进价为元
由题意得,
解得,
经检验是原方程的解.
所以(元)
答:的进价是元,的进价是元;
(2)设玩具个,则玩具个
由题意得:
解得.
答:至少购进类玩具个.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.
19、135°
【解析】
先证明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,设∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四边形的对角相等得出方程,求出x+y=135°,即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,
∵AD=DE=CE,
∴AD=DE=CE=BC,
∴∠DAE=∠AED,∠CBE=∠CEB,
∵∠DEC=90°,
∴∠EDC=∠ECD=45°,
设∠DAE=∠AED=x,∠CBE=∠CEB=y,
∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,
∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y
,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,
∴2x﹣45°=225°﹣2y,
∴x+y=135°,
∴∠AEB=360°﹣135°﹣90°=135°.
【点睛】
本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.
20、 ,当m=0时,原式=﹣1.
【解析】
原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,不等于-1、2,将代入原式即可解出答案.
【详解】
解:原式,
,
,
,
∵且,
∴当时,原式.
【点睛】
本题主要考查分数的性质、通分,四则运算法则以及倒数.
21、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
22、(1)证明见解析;(1)①16;②14;
【解析】
(1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
(1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
【详解】
(1)证明:∵GB=GC,
∴∠GBC=∠GCB,
在平行四边形ABCD中,
∵AD∥BC,AB=DC,AB∥CD,
∴GB-GE=GC-GF,
∴BE=CF,
在△ABE与△DCF中,
,
∴△ABE≌△DCF,
∴∠A=∠D,
∵AB∥CD,
∴∠A+∠D=180°,
∴∠A=∠D=90°,
∴四边形ABCD是矩形;
(1)①∵EF∥BC,
∴△GFE∽△GBC,
∵EF=AD,
∴EF=BC,
∴,
∵△GEF的面积为1,
∴△GBC的面积为18,
∴四边形BCFE的面积为16,;
②∵四边形BCFE的面积为16,
∴(EF+BC)•AB=×BC•AB=16,
∴BC•AB=14,
∴四边形ABCD的面积为14,
故答案为:14.
【点睛】
本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
23、解:(1)22.1.
(2)设需要售出x部汽车,
由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),
当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=2.
当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,
解这个方程,得x1=-24(不合题意,舍去),x2=3.
∵3<10,∴x2=3舍去.
答:要卖出2部汽车.
【解析】
一元二次方程的应用.
(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,
(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.
24、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;
【解析】
(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.
【详解】
解:(1)如图所示:
(2)①如图所示:
故答案为1.
②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,
∴MC⊥OB,
∵∠AOB=45°,
∴△MCO是等腰直角三角形,
∴MC=OC=4,
∴
当M与D重合时,即时,同理可知:点P恰好有三个;
如图4,取OM=4,以M为圆心,以OM为半径画圆.
则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或
故答案为x=0或或
【点睛】
本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.
云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。
深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。