终身会员
搜索
    上传资料 赚现金
    山东省德州市六校2021-2022学年中考押题数学预测卷含解析
    立即下载
    加入资料篮
    山东省德州市六校2021-2022学年中考押题数学预测卷含解析01
    山东省德州市六校2021-2022学年中考押题数学预测卷含解析02
    山东省德州市六校2021-2022学年中考押题数学预测卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省德州市六校2021-2022学年中考押题数学预测卷含解析

    展开
    这是一份山东省德州市六校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是(  )

    A. B.
    C. D.
    2.估计介于( )
    A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间
    3.如图是二次函数的部分图象,由图象可知不等式的解集是( )

    A. B. C.且 D.x<-1或x>5
    4.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于(  )

    A.​  B.​   C.​   D.​
    5.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )

    A.①④ B.①③ C.①②③ D.②③④
    6.不等式组的解集在数轴上表示正确的是( )
    A. B.
    C. D.
    7.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是  
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.

    A. B. C. D.
    8.下列计算正确的是( )
    A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
    C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
    9.下列立体图形中,主视图是三角形的是( )
    A. B. C. D.
    10.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
    A. B.
    C. D.
    11.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为(  )

    A.8 B.9 C.5+ D.5+
    12.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是(  )

    A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.因式分解:a3﹣2a2b+ab2=_____.
    14.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.

    15.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.

    16.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.

    17.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
    18.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.

    (1)求证:BH=EH;
    (2)如图2,当点G落在线段BC上时,求点B经过的路径长.
    20.(6分)计算:解方程:
    21.(6分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.
    (1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.

    22.(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
    (1)求证:△ABF≌△EDF;
    (2)若AB=6,BC=8,求AF的长.

    23.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

    24.(10分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.
    (1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;
    (2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:
    (3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.
    25.(10分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
    方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
    方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
    (1)若顾客选择方式一,则享受优惠的概率为   ;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.

    26.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.

    27.(12分)已知:如图所示,在中,,,求和的度数.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据函数的图象和所给出的图形分别对每一项进行判断即可.
    【详解】
    由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.
    故选: D.
    【点睛】
    本题主要考查函数模型及其应用.
    2、C
    【解析】
    解:∵,
    ∴,即
    ∴估计在2~3之间
    故选C.
    【点睛】
    本题考查估计无理数的大小.
    3、D
    【解析】
    利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
    由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
    ∴图象与x轴的另一个交点坐标为(-1,0).
    由图象可知:的解集即是y<0的解集,
    ∴x<-1或x>1.故选D.
    4、A
    【解析】
    连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
    【详解】
    解:连接AM,

    ∵AB=AC,点M为BC中点,
    ∴AM⊥CM(三线合一),BM=CM,
    ∵AB=AC=5,BC=6,
    ∴BM=CM=3,
    在Rt△ABM中,AB=5,BM=3,
    ∴根据勾股定理得:AM=
    =
    =4,
    又S△AMC=MN•AC=AM•MC,
    ∴MN=
    = .
    故选A.
    【点睛】
    综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
    5、C
    【解析】
    根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
    【详解】
    解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
    观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
    则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
    所有点中,只有点D到A距离为2个单位,故③正确;
    因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
    故选:C.
    【点睛】
    本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
    6、C
    【解析】
    分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.
    【详解】
    解:解不等式﹣x+7<x+3得:x>2,
    解不等式3x﹣5≤7得:x≤4,
    ∴不等式组的解集为:2<x≤4,
    故选:C.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    7、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    8、B
    【解析】
    利用完全平方公式及平方差公式计算即可.
    【详解】
    解:A、原式=a2-6a+9,本选项错误;
    B、原式=a2-9,本选项正确;
    C、原式=a2-2ab+b2,本选项错误;
    D、原式=a2+2ab+b2,本选项错误,
    故选:B.
    【点睛】
    本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.
    9、A
    【解析】
    考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图
    【详解】
    A、圆锥的主视图是三角形,符合题意;
    B、球的主视图是圆,不符合题意;
    C、圆柱的主视图是矩形,不符合题意;
    D、正方体的主视图是正方形,不符合题意.
    故选A.
    【点睛】
    主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看
    10、A
    【解析】
    根据题意设未知数,找到等量关系即可解题,见详解.
    【详解】
    解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
    综上方程组为,
    故选A.
    【点睛】
    本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.
    11、C
    【解析】
    过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
    【详解】

    过点C作CM⊥AB,垂足为M,
    在Rt△AMC中,
    ∵∠A=60°,AC=4,
    ∴AM=2,MC=2,
    ∴BM=AB-AM=3,
    在Rt△BMC中,
    BC===,
    ∵DE是线段AC的垂直平分线,
    ∴AD=DC,
    ∵∠A=60°,
    ∴△ADC等边三角形,
    ∴CD=AD=AC=4,
    ∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
    故答案选C.
    【点睛】
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
    12、C
    【解析】
    结合图形,逐项进行分析即可.
    【详解】
    在△ADC和△BAC中,∠ADC=∠BAC,
    如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
    ②,
    故选C.
    【点睛】
    本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a(a﹣b)1.
    【解析】
    【分析】先提公因式a,然后再利用完全平方公式进行分解即可.
    【详解】原式=a(a1﹣1ab+b1)
    =a(a﹣b)1,
    故答案为a(a﹣b)1.
    【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    14、
    【解析】
    根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.
    【详解】
    ∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)
    ∴OA=0.5c,OB==,
    ∴S△AOB===
    【点睛】
    此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.
    15、
    【解析】
    试题解析:连接AE,

    在Rt三角形ADE中,AE=4,AD=2,
    ∴∠DEA=30°,
    ∵AB∥CD,
    ∴∠EAB=∠DEA=30°,
    ∴的长度为:=.
    考点:弧长的计算.
    16、1.
    【解析】
    连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,
    OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,
    ∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.
    17、2或-1
    【解析】
    根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
    【详解】
    若8是直角边,则该三角形的斜边的长为:,
    ∴内切圆的半径为:;
    若8是斜边,则该三角形的另一条直角边的长为:,
    ∴内切圆的半径为:.
    故答案为2或-1.
    【点睛】
    本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.
    18、1.
    【解析】
    先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
    【详解】


    又∵∠A=∠A,
    ∴△ABC∽△AED,

    ∵BC=30,
    ∴DE=1,
    故答案为1.
    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2)B点经过的路径长为π.
    【解析】
    (1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.
    【详解】
    (1)、证明:如图1中,连接AH,
    由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.
    (2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,
    ∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的长为=π,
    即B点经过的路径长为π.

    【点睛】
    本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.
    20、 (1)10;(2)原方程无解.
    【解析】
    (1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)原式==10;
    (2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
    解得:x=2,
    经检验:x=2是增根,原方程无解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    21、(1)见解析;(2)AF∥CE,见解析.
    【解析】
    (1)直接利用全等三角三角形判定与性质进而得出△FOC≌△EOA(ASA),进而得出答案;
    (2)利用平行四边形的判定与性质进而得出答案.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,点O是对角线AC、BD的交点,

    ∴AO=CO,DC∥AB,DC=AB,
    ∴∠FCA=∠CAB,
    在△FOC和△EOA中

    ∴△FOC≌△EOA(ASA),
    ∴FC=AE,
    ∴DC-FC=AB-AE,
    即DF=EB;
    (2)AF∥CE,
    理由:∵FC=AE,FC∥AE,
    ∴四边形AECF是平行四边形,
    ∴AF∥CE.
    【点睛】
    此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC≌△EOA(ASA)是解题关键.
    22、(1)见解析;(2)
    【解析】
    (1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
    (2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
    【详解】
    (1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
    由折叠得:DE=CD,∠C=∠E=90°,
    ∴AB=DE,∠A=∠E=90°,
    ∵∠AFB=∠EFD,
    ∴△ABF≌△EDF(AAS);
    (2)解:∵△ABF≌△EDF,
    ∴BF=DF,
    设AF=x,则BF=DF=8﹣x,
    在Rt△ABF中,由勾股定理得:
    BF2=AB2+AF2,即(8﹣x)2=x2+62,
    x=,即AF=
    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
    23、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    24、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).
    【解析】
    (1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;
    (2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;
    (3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.
    【详解】
    (1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,
    则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;
    (2)△DCC'是等腰直角三角形,理由如下:
    ∵抛物线y=x2-2x+c=(x-1)2+c-1,
    ∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),
    ∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),
    ∴CC'=c-(c-2)=2,
    ∵点D的横坐标为1,
    ∴∠CDC'=90°,
    由对称性质可知DC=DC’,
    ∴△DCC'是等腰直角三角形;
    (3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,
    令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,
    ∴C(0,-3),A(3,0),
    ∵y=x2-2x-3=(x-1)2-4,
    ∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,
    若A、C为平行四边形的对角线,
    ∴其中点坐标为(,−),
    设P(a,-a2+2a-5),
    ∵A、C、P、Q为顶点的四边形为平行四边形,
    ∴Q(0,a-3),
    ∴=−,
    化简得,a2+3a+5=0,△<0,方程无实数解,
    ∴此时满足条件的点P不存在,
    若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,
    ∵点C和点Q在y轴上,
    ∴点P的横坐标为3,
    把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,
    ∴P1(3,-8),
    若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,
    ∴点P的横坐标为-3,
    把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,
    ∴P2(-3,-20)
    ∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.
    【点睛】
    本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.
    25、(1);(2).
    【解析】
    (1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;
    (2)根据题意可以画出相应的树状图,从而可以求得相应的概率.
    【详解】
    解:(1)由题意可得,
    顾客选择方式一,则享受优惠的概率为:,
    故答案为:;
    (2)树状图如下图所示,

    则顾客享受折上折优惠的概率是:,
    即顾客享受折上折优惠的概率是.
    【点睛】
    本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
    26、(1)证明见解析;(2)AD=2.
    【解析】
    (1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
    (2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
    【详解】
    (1)如图,连接OA,交BC于F,

    则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,
    ∴BD=8,
    ∴在Rt△ABD中,AD=.
    【点睛】
    本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
    27、,.
    【解析】
    根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.
    【详解】
    在中,,
    ∵,在三角形中,

    又∵,在三角形中,
    ∴.
    【点睛】
    此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.

    相关试卷

    2021-2022学年山东省巨野县中考押题数学预测卷含解析: 这是一份2021-2022学年山东省巨野县中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,某反比例函数的图象经过点等内容,欢迎下载使用。

    2021-2022学年山东省青岛市中考押题数学预测卷含解析: 这是一份2021-2022学年山东省青岛市中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列二次根式,最简二次根式是,下列运算正确的是,的倒数是等内容,欢迎下载使用。

    2021-2022学年山东省威海市文登区八校联考中考押题数学预测卷含解析: 这是一份2021-2022学年山东省威海市文登区八校联考中考押题数学预测卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列二次根式中,最简二次根式是,tan60°的值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map