![山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析第1页](http://www.enxinlong.com/img-preview/2/3/13561383/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析第2页](http://www.enxinlong.com/img-preview/2/3/13561383/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析第3页](http://www.enxinlong.com/img-preview/2/3/13561383/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析
展开这是一份山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,立体图形的俯视图是
A. B. C. D.
2.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
A.10° B.15° C.20° D.25°
3.一元二次方程x2+2x﹣15=0的两个根为( )
A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
4.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为( )
A.60 B.30 C.240 D.120
5.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
6.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )
A. B. C. D.
7.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
8.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是( )
A.(3,1) B.(2,2) C.(1,3) D.(3,0)
9.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )
A.三亚﹣﹣永兴岛 B.永兴岛﹣﹣黄岩岛
C.黄岩岛﹣﹣弹丸礁 D.渚碧礁﹣﹣曾母暗山
10.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为 ________.
12.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.
13.若关于x的分式方程有增根,则m的值为_____.
14.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.
15.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则 =______.
16.如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为______.
三、解答题(共8题,共72分)
17.(8分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.
18.(8分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
19.(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.
20.(8分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面数据,得到条形统计图:
样本数据的平均数、众数、中位数如下表所示:
统计量 | 平均数 | 众数 | 中位数 |
数值 | 23 | m | 21 |
根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.
21.(8分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级(2)班参加球类活动人数情况统计表
项目 | 篮球 | 足球 | 乒乓球 | 排球 | 羽毛球 |
人数 | a | 6 | 5 | 7 | 6 |
八年级(2)班学生参加球类活动人数情况扇形统计图
根据图中提供的信息,解答下列问题:a= ,b= .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
22.(10分)列方程解应用题:
为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
23.(12分)解不等式组并在数轴上表示解集.
24.在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
2、B
【解析】
根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
【详解】
根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
∵BO∥CD
∴∠BOC=∠DCO=90°
∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
故选B
【点睛】
此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
3、C
【解析】
运用配方法解方程即可.
【详解】
解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
故选择C.
【点睛】
本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
4、D
【解析】
由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
【详解】
如图所示,
由tanA=,
设BC=12x,AC=5x,根据勾股定理得:AB=13x,
由题意得:12x+5x+13x=60,
解得:x=2,
∴BC=24,AC=10,
则△ABC面积为120,
故选D.
【点睛】
此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
5、B
【解析】
试题分析:“960万”用科学记数法表示为9.6×106,故选B.
考点:科学记数法—表示较大的数.
6、C
【解析】
试题解析:观察二次函数图象可知:
∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.
故选D.
7、B
【解析】
解:连接OB,
∵四边形ABCO是平行四边形,
∴OC=AB,又OA=OB=OC,
∴OA=OB=AB,
∴△AOB为等边三角形,
∵OF⊥OC,OC∥AB,
∴OF⊥AB,
∴∠BOF=∠AOF=30°,
由圆周角定理得∠BAF=∠BOF=15°
故选:B
8、B
【解析】
作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
【详解】
解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).
故选:B.
【点睛】
此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
9、A
【解析】
根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.
【详解】
由图可得,两个点之间距离最短的是三亚-永兴岛.
故答案选A.
【点睛】
本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.
10、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.
【详解】
在Rt△ABC中,由勾股定理.得
AB==10,
∵DE⊥AB,
∴∠AED=∠C=90°.
∵∠A=∠A,
∴△AED∽△ACB,
∴,
∴,
∴AD=1.
故答案为1
【点睛】
本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.
12、这一天的最高气温约是26°
【解析】
根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.
【详解】
解:根据图象可得这一天的最高气温约是26°,
故答案为:这一天的最高气温约是26°.
【点睛】
本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
13、±
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘x-3,得
x-2(x-3)=m2,
∵原方程增根为x=3,
∴把x=3代入整式方程,得m=±.
【点睛】
解决增根问题的步骤:
①确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
14、1:1
【解析】
分析:根据相似三角形的周长比等于相似比解答.
详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.
点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
15、3﹣
【解析】
首先设点B的横坐标,由点B在抛物线y1=x2(x≥0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DE∥AC,得出E的坐标,即可得出DE和AB,进而得解.
【详解】
设点B的横坐标为,则
∵平行于x轴的直线AC
∴
又∵CD平行于y轴
∴
又∵DE∥AC
∴
∴
∴=3﹣
【点睛】
此题主要考查抛物线中的坐标求解,关键是利用平行的性质.
16、2
【解析】
分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.
详解:∵点G是△ABC重心,BC=6,
∴CD=BC=3,AG:AD=2:3,
∵GE∥BC,
∴△AEG∽△ADC,
∴GE:CD=AG:AD=2:3,
∴GE=2.
故答案为2.
点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2).
【解析】
(1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
【详解】
(1)证明:连接,
∵正方形旋转至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
【点睛】
本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
18、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).
【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.
【详解】
解:(1)如图所示,点B的坐标为(﹣4,1);
(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);
(3)如图,△A2B2C2即为所求;
(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).
【点睛】
本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.
19、见解析
【解析】
根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
【详解】
证明:∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠D=∠BAD=90°,
∴∠ABF=90°.
∵在△BAF和△DAE中,
,
∴△BAF≌△DAE(SAS),
∴∠FAB=∠EAD,
∵∠EAD+∠BAE=90°,
∴∠FAB+∠BAE=90°,
∴∠FAE=90°,
∴EA⊥AF.
20、 (1)18;(2)中位数;(3)100名.
【解析】
【分析】(1)根据条形统计图中的数据可以得到m的值;
(2)根据题意可知应选择中位数比较合适;
(3)根据统计图中的数据可以计该部门生产能手的人数.
【详解】(1)由图可得,
众数m的值为18,
故答案为:18;
(2)由题意可得,
如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,
故答案为:中位数;
(3)300×=100(名),
答:该部门生产能手有100名工人.
【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.
21、 (1)a=16,b=17.5(2)90(3)
【解析】
试题分析:(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;
(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;
(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.
考点:列表法与树状图法;用样本估计总体;扇形统计图.
22、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【解析】
设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
【详解】
解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
根据题意得:
解得:x=1.
经检验:x=1是原方程的解且符合实际问题的意义.
∴1.2x=1.2×1=2.
答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【点睛】
此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
23、﹣<x≤0,不等式组的解集表示在数轴上见解析.
【解析】
先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解不等式2x+1>0,得:x>﹣,
解不等式,得:x≤0,
则不等式组的解集为﹣<x≤0,
将不等式组的解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.
24、证明见解析.
【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
【详解】
证明:如图,连接,
∵,
∴,
∵,
∴,
∴,
∴,
∴
∵
∴,则,
∴,
∴,即,
在和中,
∵,
∴,
∴
∵是的切线,则,
∴,
∴,则,
∴是的切线.
【点睛】
本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
相关试卷
这是一份山东省菏泽市定陶县重点达标名校2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,没有实数根的是,二次函数y=3,《九章算术》中有这样一个问题等内容,欢迎下载使用。
这是一份山东省定陶县2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年山东省荷泽市定陶县重点名校中考数学五模试卷含解析,共21页。试卷主要包含了如果,那么的值为等内容,欢迎下载使用。