山东省聊城市东昌府区2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
2.一个几何体的三视图如图所示,该几何体是
A.直三棱柱 B.长方体 C.圆锥 D.立方体
3.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
4.如图,,且.、是上两点,,.若,,,则的长为( )
A. B. C. D.
5.如图,点A所表示的数的绝对值是( )
A.3 B.﹣3 C. D.
6.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
7.下列由左边到右边的变形,属于因式分解的是( ).
A.(x+1)(x-1)=x2-1
B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b)
D.mx+my+nx+ny=m(x+y)+n(x+y)
8.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
A. B. C. D.
9.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
10.如图,圆O是等边三角形内切圆,则∠BOC的度数是( )
A.60° B.100° C.110° D.120°
11.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
12.下列各数:π,sin30°,﹣ ,其中无理数的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____
14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .
15.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
16.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
17.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.
18.函数的定义域是________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.求证:AD是⊙O的切线.若BC=8,tanB=,求⊙O 的半径.
20.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
(1)求证:DF⊥AC;
(2)求tan∠E的值.
21.(6分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
22.(8分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点
(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;
(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值
(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由
23.(8分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度.
24.(10分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.
(1)求证:是的切线;
(2)当,时,求的半径.
25.(10分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
26.(12分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
27.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
2、A
【解析】
根据三视图的形状可判断几何体的形状.
【详解】
观察三视图可知,该几何体是直三棱柱.
故选A.
本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.
3、B
【解析】
由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
【详解】
根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
故选B.
【点睛】
此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
4、D
【解析】
分析:
详解:如图,
∵AB⊥CD,CE⊥AD,
∴∠1=∠2,
又∵∠3=∠4,
∴180°-∠1-∠4=180°-∠2-∠3,
即∠A=∠C.
∵BF⊥AD,
∴∠CED=∠BFD=90°,
∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,ED=BF=b,
又∵EF=c,
∴AD=a+b-c.
故选:D.
点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
5、A
【解析】
根据负数的绝对值是其相反数解答即可.
【详解】
|-3|=3,
故选A.
【点睛】
此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
6、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
7、C
【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
【详解】
解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
故选择C.
【点睛】
本题考查了因式分解的定义,牢记定义是解题关键.
8、C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
9、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
10、D
【解析】
由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
【详解】
解:∵△ABC是等边三角形,
∴∠A=∠ABC=∠ACB=60°,
∵圆O是等边三角形内切圆,
∴OB、OC是∠ABC、∠ACB的角平分线,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
∴∠BOC=180°﹣60=120°,
故选D.
【点睛】
此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).
11、C
【解析】
由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
12、B
【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
【详解】
sin30°=,=3,故无理数有π,-,
故选:B.
【点睛】
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(﹣2,4)
【解析】
根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.
【详解】
解:∵点A (2,-4)与点B关于原点中心对称,
∴点B的坐标为:(-2,4).
故答案为:(-2,4).
【点睛】
此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.
14、2
【解析】
∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
∴Rt△DBE中,BE=2DE=2。
15、k>
【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
【详解】
∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
∴△>0,即(2k+1)2-4(k2+1)>0,
解得k>,
故答案为k>.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
16、1.
【解析】
∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
17、1.
【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.
【详解】
解:∵该班有40名同学,
∴这个班同学年龄的中位数是第20和21个数的平均数.
∵14岁的有1人,1岁的有21人,
∴这个班同学年龄的中位数是1岁.
【点睛】
此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.
18、x≥-1
【解析】
分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
详解:根据题意得:x+1≥0,解得:x≥﹣1.
故答案为x≥﹣1.
点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:
(1)当函数表达式是整式时,定义域可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(1)当函数表达式是二次根式时,被开方数非负.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2).
【解析】
(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;
(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.
【详解】
(1)证明:连接,
,
,
,
,
在中,,
,
,
则为圆的切线;
(2)设圆的半径为,
在中,,
根据勾股定理得:,
,
在中,,
,
根据勾股定理得:,
在中,,即,
解得:.
【点睛】
此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.
20、(1)证明见解析;(2)tan∠CBG=.
【解析】
(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
【详解】
解:(1)证明:连接OD,CD,
∵BC是⊙O的直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线
∴OD∥AC,
∵DF为⊙O的切线,
∴OD⊥DF,
∴DF⊥AC;
(2)解:如图,连接BG,
∵BC是⊙O的直径,
∴∠BGC=90°,
∵∠EFC=90°=∠BGC,
∴EF∥BG,
∴∠CBG=∠E,
Rt△BDC中,∵BD=3,BC=5,
∴CD=4,
∵S△ABC=,即6×4=5BG,
∴BG=,
由勾股定理得:CG=,
∴tan∠CBG=tan∠E=.
【点睛】
本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
21、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
22、 (1);6;(2)有最小值;(3),.
【解析】
(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;
(2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证.
(3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P.
【详解】
解:(1) 对于直线y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵抛物线y=x2+bx+c过B,C两点,
∴
∴
∴抛物线的解析式为y=;
令y=0,
∴=0,
∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如图2,记半圆的圆心为O',连接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,
∴D(0,2),
∴BD=2-(-3)=5;
(2) 如图3,
∵A(-1,0),C(4,0),
∴AC=5,
过点E作EG∥BC交x轴于G,
∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,
∴S△ABF=AF•h,S△BEF=EF•h,
∴==
∵的最小值,
∴最小,
∵CF∥GE,
∴
∴最小,即:CG最大,
∴EG和果圆的抛物线部分只有一个交点时,CG最大,
∵直线BC的解析式为y=x-3,
设直线EG的解析式为y=x+m①,
∵抛物线的解析式为y=x2-x-3②,
联立①②化简得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直线EG的解析式为y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,
∴=;
(3),.理由:
如图1,∵AC是半圆的直径,
∴半圆上除点A,C外任意一点Q,都有∠AQC=90°,
∴点P只能在抛物线部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
当∠APC=∠CAB时,点P和点B重合,即:P(0,-3),
由抛物线的对称性知,另一个点P的坐标为(3,-3),
即:使∠APC=∠CAB,点P坐标为(0,-3)或(3,-3).
【点睛】
本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键.
23、(1)证明见解析(2)①线段EC,CF与BC的数量关系为:CE+CF=BC.②CE+CF=BC(3)
【解析】
(1)利用包含60°角的菱形,证明△BAE≌△CAF,可求证;
(2)由特殊到一般,证明△CAE′∽△CGE,从而可以得到EC、CF与BC的数量关系
(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.
【详解】
解:(1)证明:∵四边形ABCD是菱形,∠BAD=120°,
∴∠BAC=60°,∠B=∠ACF=60°,AB=BC,AB=AC,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
,
∴△BAE≌△CAF,
∴BE=CF,
∴EC+CF=EC+BE=BC,
即EC+CF=BC;
(2)知识探究:
①线段EC,CF与BC的数量关系为:CE+CF=BC.
理由:如图乙,过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,
∴△CAE′∽△CGE
,
,
同理可得:,
,
即;
②CE+CF=BC.
理由如下:
过点A作AE′∥EG,AF′∥GF,分别交BC、CD于E′、F′.
类比(1)可得:E′C+CF′=BC,
∵AE′∥EG,∴△CAE′∽△CAE,
∴,∴CE=CE′,
同理可得:CF=CF′,
∴CE+CF=CE′+CF′=(CE′+CF′)=BC,
即CE+CF=BC;
(3)连接BD与AC交于点H,如图所示:
在Rt△ABH中,
∵AB=8,∠BAC=60°,
∴BH=ABsin60°=8×=,
AH=CH=ABcos60°=8×=4,
∴GH===1,
∴CG=4-1=3,
∴,
∴t=(t>2),
由(2)②得:CE+CF=BC,
∴CE=BC -CF=×8-=.
【点睛】
本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形.
24、(1)见解析;(2)的半径是.
【解析】
(1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
【详解】
解:(1)连结.
∵平分,
∴,又,
∴,
∴,
∵是边上的高线,
∴,
∴,
∴是的切线.
(2)∵,
∴,,
∴是中点,
∴,
∵,
∴,
∵,,
∴,
∴,
又∵,
∴,
在中,
,
∴,
∴,
,
而,
∴,
∴,
∴的半径是.
【点睛】
本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
25、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
26、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
27、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析: 这是一份2021-2022学年山东省莱芜市名校中考数学考前最后一卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列四个实数中是无理数的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解是等内容,欢迎下载使用。
2021-2022学年潜江市中考数学考前最后一卷含解析: 这是一份2021-2022学年潜江市中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。