|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析01
    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析02
    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了二次函数y=3,函数的自变量x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列各数是不等式组的解是(  )
    A.0 B. C.2 D.3
    2.若分式方程无解,则a的值为(  )
    A.0 B.-1 C.0或-1 D.1或-1
    3.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为  

    A. B. C. D.
    4.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为(  )

    A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
    5.二次函数y=3(x﹣1)2+2,下列说法正确的是(  )
    A.图象的开口向下
    B.图象的顶点坐标是(1,2)
    C.当x>1时,y随x的增大而减小
    D.图象与y轴的交点坐标为(0,2)
    6.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    7.如果两圆只有两条公切线,那么这两圆的位置关系是( )
    A.内切 B.外切 C.相交 D.外离
    8.下列图形中既是中心对称图形又是轴对称图形的是
    A. B. C. D.
    9.函数的自变量x的取值范围是( )
    A. B. C. D.
    10.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是(  )

    A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.

    12.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长_____海里.

    13.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .
    14.已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC时,旋转角度α 的值为_________,

    15.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.

    16.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .

    三、解答题(共8题,共72分)
    17.(8分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:
    该校被抽取的男生跳绳成绩频数分布直方图

    (1)本次调查中,男生的跳绳成绩的中位数在________等级;
    (2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.
    18.(8分)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.
    19.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    20.(8分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
    (1)这次知识竞赛共有多少名学生?
    (2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
    (3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

    21.(8分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
    拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.

    22.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
    (1)求y与x之间的函数关系式;
    (2)直接写出当x>0时,不等式x+b>的解集;
    (3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.

    23.(12分)先化简,再求值:,其中x=,y=.
    24.已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D.
    (1)求抛物线的顶点C的坐标及A,B两点的坐标;
    (2)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点E在△DAC内,求t的取值范围;
    (3)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当△PAB的面积是△ABC面积的2倍时,求m,n的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    求出不等式组的解集,判断即可.
    【详解】

    由①得:x>-1,
    由②得:x>2,
    则不等式组的解集为x>2,即3是不等式组的解,
    故选D.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    2、D
    【解析】
    试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
    整理得:x(1-a)=2a,
    当1-a=0时,即a=1,整式方程无解,
    当x+1=0,即x=-1时,分式方程无解,
    把x=-1代入x(1-a)=2a得:-(1-a)=2a,
    解得:a=-1,
    故选D.
    点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
    3、B
    【解析】
    试题解析:在菱形中,,,所以,,在中,,
    因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.

    4、B
    【解析】
    令x=0,y=6,∴B(0,6),
    ∵等腰△OBC,∴点C在线段OB的垂直平分线上,
    ∴设C(a,3),则C '(a-5,3),
    ∴3=3(a-5)+6,解得a=4,
    ∴C(4,3).
    故选B.
    点睛:掌握等腰三角形的性质、函数图像的平移.
    5、B
    【解析】
    由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
    【详解】
    解:A、因为a=3>0,所以开口向上,错误;
    B、顶点坐标是(1,2),正确;
    C、当x>1时,y随x增大而增大,错误;
    D、图象与y轴的交点坐标为(0,5),错误;
    故选:B.
    【点睛】
    考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    6、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    7、C
    【解析】
    两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
    【详解】
    根据两圆相交时才有2条公切线.
    故选C.
    【点睛】
    本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
    8、B
    【解析】
    根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.
    【详解】
    A、是轴对称图形,不是中心对称图形,不符合题意;
    B、是轴对称图形,也是中心对称图形,符合题意;
    C、是轴对称图形,不是中心对称图形,不符合题意;
    D、不是轴对称图形,是中心对称图形,不符合题意.
    故选B.
    9、D
    【解析】
    根据二次根式的意义,被开方数是非负数.
    【详解】
    根据题意得,
    解得.
    故选D.
    【点睛】
    本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负数.
    10、C
    【解析】
    利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
    【详解】
    解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
    ∴a+b<1,ab<1,a﹣b<1,a÷b<1.
    故选:C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.
    【详解】
    连接OD,

    则∠ODC=90°,∠COD=70°,
    ∵OA=OD,
    ∴∠ODA=∠A=∠COD=35°,
    ∴∠CDA=∠CDO+∠ODA=90°+35°=1°,
    故答案为1.
    考点:切线的性质.
    12、1
    【解析】
    分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=1海里.
    详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.
    ∵AB∥NP,
    ∴∠A=∠NPA=60°.
    在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,
    ∴AB=AP•cos∠A=4×cos60°=4×=1海里.
    故答案为1.
    点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.
    13、1
    【解析】
    考点:圆锥的计算.
    分析:求得扇形的弧长,除以1π即为圆锥的底面半径.
    解:扇形的弧长为:=4π;
    这个圆锥的底面半径为:4π÷1π=1.
    点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
    14、15或255°
    【解析】
    如下图,设直线DC′与AB相交于点E,
    ∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,
    ∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,
    ∴AE=AD,
    又∵AD=AB,AC′=AC,
    ∴AE=AB=AC=AC′,
    ∴∠C′=30°,
    ∴∠EAC′=60°,
    ∴∠CAC′=60°-45°=15°, 即当DC′∥BC时,旋转角=15°;
    同理,当DC′′∥BC时,旋转角=180°-45°-60°=255°;
    综上所述,当旋转角=15°或255°时,DC′//BC.
    故答案为:15°或255°.

    15、
    【解析】
    如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
    【详解】
    解:∵四边形OABC是矩形,
    ∴OA=BC,AB=OC,tan∠BOC==,
    ∴AB=2OA,
    ∵,OB=,
    ∴OA=2,AB=2.∵OA′由OA翻折得到,
    ∴OA′= OA=2.
    如图,过点A′作A′D⊥x轴与点D;
    设A′D=a,OD=b;
    ∵四边形ABCO为矩形,
    ∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
    设AB=OC=a,BC=AO=b;
    ∵OB=,tan∠BOC=,
    ∴,
    解得: ;
    由题意得:A′O=AO=2;△ABO≌△A′BO;
    由勾股定理得:x2+y2=2①,
    由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
    联立①②并解得:x=,y=.

    故答案为(−,)
    【点睛】
    该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
    16、107°
    【解析】
    过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.
    【详解】
    过C作d∥a, ∴a∥b, ∴a∥b∥d,

    ∵四边形ABCD是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°,
    ∵b∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,
    ∵a∥d, ∴∠1=∠5=107°,故答案为107°.
    【点睛】
    本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.

    三、解答题(共8题,共72分)
    17、(1)C;(2)100
    【解析】
    (1)根据中位数的定义即可作出判断;
    (2)先算出样本中C等级的百分比,再用总数乘以400即可.
    【详解】
    解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;
    故答案为C.
    (2)400 =100(人)
    答:估计该校九年级男生跳绳成绩是等级的人数有100人.
    【点睛】
    本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.
    18、x+1,2.
    【解析】
    先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.
    【详解】
    原式=x2+x﹣(x2﹣1)
    =x2+x﹣x2+1
    =x+1,
    当x=1时,原式=2.
    【点睛】
    本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.
    19、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    20、 (1)200;(2)72°,作图见解析;(3).
    【解析】
    (1)用一等奖的人数除以所占的百分比求出总人数;
    (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
    (3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
    【详解】
    解:(1)这次知识竞赛共有学生=200(名);
    (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
    补图如下:

    “二等奖”对应的扇形圆心角度数是:360°×=72°;
    (3)小华获得“一等奖或二等奖”的概率是: =.
    【点睛】
    本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
    21、(1)证明见解析;(2);拓展:
    【解析】
    (1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
    (2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
    拓展:对△ABD的外心位置进行推理,即可得出结论.
    【详解】
    (1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
    ∴BD=CE,
    ∴BC-BD=BC-CE,即BE=CD,
    ∵∠B=∠C=40°,
    ∴AB=AC,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS);
    (2)解:∵∠B=∠C=40°,AB=BE,
    ∴∠BEA=∠EAB=(180°-40°)=70°,
    ∵BE=CD,AB=AC,
    ∴AC=CD,
    ∴∠ADC=∠DAC=(180°-40°)=70°,
    ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
    拓展:
    解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
    ∴∠BAD=140°-∠BDA<90°.
    ∴∠BDA>50°,
    又∵∠BDA<90°,
    ∴50°<∠BDA<90°.
    【点睛】
    本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
    22、(1);(2)x>1;(3)P(﹣,0)或(,0)
    【解析】
    分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
    (2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
    (3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
    详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
    ∴A(1,3),
    把A(1,3)代入双曲线y=,可得k=1×3=3,
    ∴y与x之间的函数关系式为:y=;
    (2)∵A(1,3),
    ∴当x>0时,不等式x+b>的解集为:x>1;
    (3)y1=﹣x+4,令y=0,则x=4,
    ∴点B的坐标为(4,0),
    把A(1,3)代入y2=x+b,可得3=+b,
    ∴b=,
    ∴y2=x+,
    令y2=0,则x=﹣3,即C(﹣3,0),
    ∴BC=7,
    ∵AP把△ABC的面积分成1:3两部分,
    ∴CP=BC=,或BP=BC=
    ∴OP=3﹣=,或OP=4﹣=,
    ∴P(﹣,0)或(,0).
    点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
    23、x+y,.
    【解析】
    试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
    试题解析:原式= ==x+y,
    当x=,y==2时,原式=﹣2+2=.
    24、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.
    【解析】
    分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐标.
    (Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在△DAC内,求t的取值范围.
    (Ⅲ)直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面积是△ABC面积的2倍,所以AB•PM=AB•CF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在抛物线y=x2﹣1x+9上,联立方程从而可求出m、n的值.
    详解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴顶点坐标为(2,0).
    联立,
    解得:或;
    (II)由题意可知:新抛物线的顶点坐标为(2﹣t,1),设直线AC的解析式为y=kx+b
    将A(1,4),C(2,0)代入y=kx+b中,∴,
    解得:,
    ∴直线AC的解析式为y=﹣2x+1.
    当点E在直线AC上时,﹣2(2﹣t)+1=1,解得:t=.
    当点E在直线AD上时,(2﹣t)+2=1,解得:t=5,
    ∴当点E在△DAC内时,<t<5;
    (III)如图,直线AB与y轴交于点F,连接CF,过点P作PM⊥AB于点M,PN⊥x轴于点N,交DB于点G.
    由直线y=x+2与x轴交于点D,与y轴交于点F,
    得D(﹣2,0),F(0,2),∴OD=OF=2.
    ∵∠FOD=90°,∴∠OFD=∠ODF=45°.
    ∵OC=OF=2,∠FOC=90°,
    ∴CF==2,∠OFC=∠OCF=45°,
    ∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.
    ∵△PAB的面积是△ABC面积的2倍,∴AB•PM=AB•CF,
    ∴PM=2CF=1.
    ∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.
    在Rt△PGM中,sin∠PGM=, ∴PG===3.
    ∵点G在直线y=x+2上,P(m,n), ∴G(m,m+2).
    ∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.
    ∵P(m,n)在抛物线y=x2﹣1x+9上,
    ∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.
    ∵﹣2<m<1,∴m=不合题意,舍去,∴m=,∴n=m+4=.

    点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.

    相关试卷

    2023年山东省临沂市兰陵县中考数学二模试卷(含解析): 这是一份2023年山东省临沂市兰陵县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年山东省临沂市兰陵县中考数学二模试卷(含解析): 这是一份2022年山东省临沂市兰陵县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省临沂兰陵县联考2022年十校联考最后数学试题含解析: 这是一份山东省临沂兰陵县联考2022年十校联考最后数学试题含解析,共15页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解为,下列说法中不正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map