|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析01
    山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析02
    山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析

    展开
    这是一份山东省临沂经济开发区四校联考2022年中考数学模拟预测题含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

    A.4,30° B.2,60° C.1,30° D.3,60°
    2.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为(  )
    A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
    3.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的(  )

    A.平均数 B.中位数 C.众数 D.方差
    4.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    5.下列命题是真命题的是( )
    A.如实数a,b满足a2=b2,则a=b
    B.若实数a,b满足a<0,b<0,则ab<0
    C.“购买1张彩票就中奖”是不可能事件
    D.三角形的三个内角中最多有一个钝角
    6.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    7.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )

    A.2 B.3 C.4 D.5
    8. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是(  )

    A.2 B. C.5 D.
    9.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转(  )

    A.36° B.45° C.72° D.90°
    10.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为(  )
    A.(1+40%)×30%x B.(1+40%)(1﹣30%)x
    C. D.
    11.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
    A.平均数是15 B.众数是10 C.中位数是17 D.方差是
    12.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为(  )
    A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式:a3﹣a=_____.
    14.如图,ΔABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到ΔA′B′C′,且点A在A′B′上,则旋转角为________________°.

    15.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.

    16.不等式组的最小整数解是_____.
    17.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
    18.因式分解:3a3﹣6a2b+3ab2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
    ①求此抛物线的解析式;
    ②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
    20.(6分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.

    21.(6分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

    22.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
    (1)求线段AB的表达式,并写出自变量x的取值范围;
    (2)求乙的步行速度;
    (3)求乙比甲早几分钟到达终点?

    23.(8分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
    (1)求证:AO=EO;
    (2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.

    24.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图

    (1)将条形统计图补充完整;
    (2)该班团员在这一个月内所发箴言的平均条数是________;
    (3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
    25.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.

    (1)求出m的值并画出这条抛物线;
    (2)求它与x轴的交点和抛物线顶点的坐标;
    (3)x取什么值时,抛物线在x轴上方?
    (4)x取什么值时,y的值随x值的增大而减小?
    26.(12分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
    (1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;
    (2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;
    (3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.

    27.(12分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD=   (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,
    ∴∠A′B′C=60°,AB=A′B′=A′C=4,
    ∴△A′B′C是等边三角形,
    ∴B′C=4,∠B′A′C=60°,
    ∴BB′=6﹣4=2,
    ∴平移的距离和旋转角的度数分别为:2,60°
    故选B.
    考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定
    2、A
    【解析】
    先将抛物线解析式化为顶点式,左加右减的原则即可.
    【详解】

    当向左平移2个单位长度,再向上平移3个单位长度,得
    .
    故选A.
    【点睛】
    本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
    3、B
    【解析】
    根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
    【详解】
    因为需要保证不少于50%的骑行是免费的,
    所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
    故选B.
    【点睛】
    本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
    4、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    5、D
    【解析】
    A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断
    B. 同号相乘为正,异号相乘为负,即可判断
    C. “购买1张彩票就中奖”是随机事件即可判断
    D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断
    【详解】
    如实数a,b满足a2=b2,则a=±b,A是假命题;
    数a,b满足a<0,b<0,则ab>0,B是假命题;
    若实“购买1张彩票就中奖”是随机事件,C是假命题;
    三角形的三个内角中最多有一个钝角,D是真命题;
    故选:D
    【点睛】
    本题考查了命题与定理,根据实际判断是解题的关键
    6、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    7、C
    【解析】
    如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
    【详解】
    如图,连接BD、CD

    在和中,





    同理可得:
    ,即
    为⊙O的直径



    故选:C.

    【点睛】
    本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
    8、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    9、C
    【解析】
    分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
    详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
    故选C.
    点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
    10、D
    【解析】
    根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决.
    【详解】
    由题意可得,
    去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=,
    故选:D.
    【点睛】
    本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式.
    11、C
    【解析】
    解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
    故选C.
    【点睛】
    本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
    12、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000071的小数点向或移动7位得到7.1,
    所以0.00000071用科学记数法表示为7.1×10﹣7,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a(a+1)(a﹣1)
    【解析】
    解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
    14、50度
    【解析】
    由将△ACB绕点C顺时针旋转得到△A′B′C′,即可得△ACB≌△A′B′C′,则可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度数,即可求得∠ACB'的度数,继而求得∠B'CB的度数.
    【详解】
    ∵将△ACB绕点C顺时针旋转得到,
    ∴△ACB≌,
    ∴∠A′=∠BAC,AC=CA′,
    ∴∠BAC=∠CAA′,
    ∵△ACB中,∠ACB=90°,∠ABC=25°,
    ∴∠BAC=90∘−∠ABC=65°,
    ∴∠BAC=∠CAA′=65°,
    ∴∠B′AB=180°−65°−65°=50°,
    ∴∠ACB′=180°−25°−50°−65°=40°,
    ∴∠B′CB=90°−40°=50°.
    故答案为50.
    【点睛】
    此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
    15、或
    【解析】
    分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
    详解:分两种情况:
    ①如图,当∠CDM=90°时,△CDM是直角三角形,

    ∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
    ∴∠C=30°,AB=AC=+2,
    由折叠可得,∠MDN=∠A=60°,
    ∴∠BDN=30°,
    ∴BN=DN=AN,
    ∴BN=AB=,
    ∴AN=2BN=,
    ∵∠DNB=60°,
    ∴∠ANM=∠DNM=60°,
    ∴∠AMN=60°,
    ∴AN=MN=;
    ②如图,当∠CMD=90°时,△CDM是直角三角形,

    由题可得,∠CDM=60°,∠A=∠MDN=60°,
    ∴∠BDN=60°,∠BND=30°,
    ∴BD=DN=AN,BN=BD,
    又∵AB=+2,
    ∴AN=2,BN=,
    过N作NH⊥AM于H,则∠ANH=30°,
    ∴AH=AN=1,HN=,
    由折叠可得,∠AMN=∠DMN=45°,
    ∴△MNH是等腰直角三角形,
    ∴HM=HN=,
    ∴MN=,
    故答案为:或.
    点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    16、-1
    【解析】
    分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
    详解: .
    ∵解不等式①得:x>-3,
    解不等式②得:x≤1,
    ∴不等式组的解集为-3<x≤1,
    ∴不等式组的最小整数解是-1,
    故答案为:-1.
    点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
    17、2.
    【解析】
    把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
    【详解】
    解:∵m是方程2x2﹣3x﹣2=0的一个根,
    ∴代入得:2m2﹣3m﹣2=0,
    ∴2m2﹣3m=2,
    ∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
    故答案为:2.
    【点睛】
    本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
    18、3a(a﹣b)1
    【解析】
    首先提取公因式3a,再利用完全平方公式分解即可.
    【详解】
    3a3﹣6a1b+3ab1,
    =3a(a1﹣1ab+b1),
    =3a(a﹣b)1.
    故答案为:3a(a﹣b)1.
    【点睛】
    此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①;②n≤1;(2)ac≤1,见解析.
    【解析】
    (1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
    ②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
    (2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
    【详解】
    解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
    △=(b+1)2=1,b=﹣1,
    平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
    ∴4a﹣2b=1,
    ∴a=﹣,b=﹣1,
    原抛物线:y=﹣x2+x,
    ②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
    ∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
    由得:x2+2n=1有解,所以n≤1.
    (2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
    其解析式为:y=ax2﹣bx+c过点(c,1),
    ∴ac2﹣bc+c=1 (c>1),
    ∴ac﹣b+1=1,b=ac+1,
    且当x=1时,y=c,
    对称轴:x=,抛物线开口向上,画草图如右所示.
    由题知,当1<x<c时,y>1.
    ∴≥c,b≥2ac,
    ∴ac+1≥2ac,ac≤1;

    【点睛】
    本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
    20、(1)见解析;(2)见解析;(3)AG=1.
    【解析】
    (1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
    (2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
    (3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
    【详解】
    (1)证明:连结OC,如图,
    ∵C是劣弧AE的中点,
    ∴OC⊥AE,
    ∵CG∥AE,
    ∴CG⊥OC,
    ∴CG是⊙O的切线;
    (2)证明:连结AC、BC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠2+∠BCD=90°,
    而CD⊥AB,
    ∴∠B+∠BCD=90°,
    ∴∠B=∠2,
    ∵C是劣弧AE的中点,
    ∴,
    ∴∠1=∠B,
    ∴∠1=∠2,
    ∴AF=CF;
    (3)解:∵CG∥AE,
    ∴∠FAD=∠G,
    ∵sinG=0.6,
    ∴sin∠FAD==0.6,
    ∵∠CDA=90°,AF=CF=4,
    ∴DF=2.4,
    ∴AD=3.2,
    ∴CD=CF+DF=6.4,
    ∵AF∥CG,
    ∴,

    ∴DG=,
    ∴AG=DG﹣AD=1.

    【点睛】
    本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.
    21、(1)证明见解析;(2);(3).
    【解析】
    由余角的性质可得,即可证∽;
    由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
    由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
    【详解】
    证明:,

    又,


    又,

    ∽,

    又,,


    如图,延长AD与BG的延长线交于H点




    ,由可知≌


    代入上式可得,
    ∽,
    ,,

    ,,
    平分
    又平分,

    是等腰直角三角形.
    ∴.
    【点睛】
    本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
    22、(1);(2)80米/分;(3)6分钟
    【解析】
    (1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
    (2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
    (3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.
    【详解】
    (1)根据题意得:
    设线段AB的表达式为:y=kx+b (4≤x≤16),
    把(4,240),(16,0)代入得:

    解得:,
    即线段AB的表达式为:y= -20x+320 (4≤x≤16),
    (2)又线段OA可知:甲的速度为:=60(米/分),
    乙的步行速度为:=80(米/分),
    答:乙的步行速度为80米/分,
    (3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
    与终点的距离为:2400-960=1440(米),
    相遇后,到达终点甲所用的时间为:=24(分),
    相遇后,到达终点乙所用的时间为:=18(分),
    24-18=6(分),
    答:乙比甲早6分钟到达终点.
    【点睛】
    本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.
    23、(1)详见解析;(2)平行四边形.
    【解析】
    (1)由“三线合一”定理即可得到结论;
    (2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
    【详解】
    证明:(1)∵BD平分∠ABC,AE⊥BD,
    ∴AO=EO;
    (2)平行四边形,
    证明:∵AD∥BC,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵OA=OE,OB⊥AE,
    ∴AB=BE,
    ∴AD=BE,
    ∵BE=CE,
    ∴AD=EC,
    ∴四边形AECD是平行四边形.

    【点睛】
    考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    24、(1)作图见解析;(2)3;(3)
    【解析】
    (1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;
    (2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;
    (3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.
    【详解】
    解:(1)该班团员人数为:3÷25%=12(人),
    发了4条赠言的人数为:12−2−2−3−1=4(人),
    将条形统计图补充完整如下:

    (2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,
    故答案为:3;
    (3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,
    ∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,
    方法一:列表得:

    共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
    所选两位同学中恰好是一位男同学和一位女同学的概率为:;
    方法二:画树状图如下:

    共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
    所选两位同学中恰好是一位男同学和一位女同学的概率为:;
    【点睛】
    此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    25、(1);(2),;(1);(2)
    【解析】
    试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
    ∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
    列表得:

    X

    ﹣1


    0


    1


    2


    1


    y


    0


    1


    2


    1


    0

    图象如下.

    (2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
    ∴抛物线与x轴的交点为(﹣1,0),(1,0).
    ∵y=﹣x2+2x+1=﹣(x﹣1)2+2
    ∴抛物线顶点坐标为(1,2).
    (1)由图象可知:
    当﹣1<x<1时,抛物线在x轴上方.
    (2)由图象可知:
    当x>1时,y的值随x值的增大而减小
    考点: 二次函数的运用
    26、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)
    【解析】
    试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
    (2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;
    (3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.
    试题解析:(1)AE=DF,AE⊥DF,
    理由是:∵四边形ABCD是正方形,
    ∴AD=DC,∠ADE=∠DCF=90°,
    ∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,
    ∴DE=CF,
    在△ADE和△DCF中

    ∴,
    ∴AE=DF,∠DAE=∠FDC,
    ∵∠ADE=90°,∴∠ADP+∠CDF=90°,
    ∴∠ADP+∠DAE=90°,
    ∴∠APD=180°-90°=90°,
    ∴AE⊥DF;
    (2)(1)中的结论还成立,
    有两种情况:

    ①如图1,当AC=CE时,
    设正方形ABCD的边长为a,由勾股定理得,

    则;

    ②如图2,当AE=AC时,
    设正方形ABCD的边长为a,由勾股定理得:

    ∵四边形ABCD是正方形,
    ∴∠ADC=90°,即AD⊥CE,
    ∴DE=CD=a,
    ∴CE:CD=2a:a=2;

    即CE:CD=或2;
    (3)∵点P在运动中保持∠APD=90°,
    ∴点P的路径是以AD为直径的圆,
    如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,
    此时CP的长度最大,
    ∵在Rt△QDC中,
    ∴,
    即线段CP的最大值是.
    点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.
    27、(1);(2);(3).
    【解析】
    (1)求出BE,BD即可解决问题.
    (2)利用勾股定理,面积法求高CD即可.
    (3)根据CD=3DE,构建方程即可解决问题.
    【详解】
    解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
    ∴.
    ∵CD,CE是斜边AB上的高,中线,
    ∴∠BDC=91°,.
    ∴在Rt△BCD中,

    (2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,


    故答案为:.
    (3)在Rt△BCD中,,
    ∴,
    又,
    ∴CD=3DE,即.
    ∵b=3,
    ∴2a=9﹣a2,即a2+2a﹣9=1.
    由求根公式得(负值舍去),
    即所求a的值是.
    【点睛】
    本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    相关试卷

    山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析: 这是一份山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了|–|的倒数是,如图,能判定EB∥AC的条件是,一、单选题等内容,欢迎下载使用。

    山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析: 这是一份山东省临沂兰陵县联考2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了二次函数y=3,函数的自变量x的取值范围是等内容,欢迎下载使用。

    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map