山东省济宁市马营镇初级中学2021-2022学年中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.-4的绝对值是( )
A.4 B. C.-4 D.
2.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )
A.1 B.2 C.3 D.4
3.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
A.在同一条直线上 B.在同一条抛物线上
C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
4.一、单选题
二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:
A.4个 B.3个 C.2个 D.1个
5.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是( )
A.7cm B.4cm C.5cm D.3cm
6.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
7.菱形的两条对角线长分别是6cm和8cm,则它的面积是( )
A.6cm2 B.12cm2 C.24cm2 D.48cm2
8.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为
A.12 B.20 C.24 D.32
9.如图所示几何体的主视图是( )
A. B. C. D.
10.若代数式有意义,则实数x的取值范围是( )
A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
二、填空题(共7小题,每小题3分,满分21分)
11.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
12.已知(x-ay)(x+ay),那么a=_______
13.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.
14.如图,已知正八边形ABCDEFGH内部△ABE的面积为6cm1,则正八边形ABCDEFGH面积为_____cm1.
15.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.
16.函数y= 中,自变量x的取值范围是 _____.
17.估计无理数在连续整数___与____之间.
三、解答题(共7小题,满分69分)
18.(10分)已知关于x,y的二元一次方程组的解为,求a、b的值.
19.(5分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
20.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
21.(10分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
解决问题:
①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
22.(10分)(问题情境)
张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
[变式探究]
如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
[结论运用]
如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
[迁移拓展]
图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
23.(12分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
(1)求甲种树和乙种树的单价;
(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
24.(14分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)
【详解】
根据绝对值的概念可得-4的绝对值为4.
【点睛】
错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.
2、B
【解析】
试题解析:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.
3、A。
【解析】∵对于点A(x1,y1),B(x2,y2),,
∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
那么,
。
又∵,
∴。
∴。
令,
则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
∴互不重合的四点C,D,E,F在同一条直线上。故选A。
4、B
【解析】
试题解析:①∵二次函数的图象的开口向下,
∴a<0,
∵二次函数的图象y轴的交点在y轴的正半轴上,
∴c>0,
∵二次函数图象的对称轴是直线x=1,
∴2a+b=0,b>0
∴abc<0,故正确;
②∵抛物线与x轴有两个交点,
故正确;
③∵二次函数图象的对称轴是直线x=1,
∴抛物线上x=0时的点与当x=2时的点对称,
即当x=2时,y>0
∴4a+2b+c>0,
故错误;
④∵二次函数图象的对称轴是直线x=1,
∴2a+b=0,
故正确.
综上所述,正确的结论有3个.
故选B.
5、A
【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.
【详解】
解:作PD⊥OB于D,
∵OP平分∠AOB,PC⊥OA,PD⊥OA,
∴PD=PC=6cm,
则PD的最小值是6cm,
故选A.
【点睛】
考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.
6、B
【解析】
分析:根据一元二次方程根的判别式判断即可.
详解:A、x2+6x+9=0.
△=62-4×9=36-36=0,
方程有两个相等实数根;
B、x2=x.
x2-x=0.
△=(-1)2-4×1×0=1>0.
方程有两个不相等实数根;
C、x2+3=2x.
x2-2x+3=0.
△=(-2)2-4×1×3=-8<0,
方程无实根;
D、(x-1)2+1=0.
(x-1)2=-1,
则方程无实根;
故选B.
点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
7、C
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=ab=×6cm×8cm=14cm1.
故选:C.
【点睛】
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
8、D
【解析】
如图,过点C作CD⊥x轴于点D,
∵点C的坐标为(3,4),∴OD=3,CD=4.
∴根据勾股定理,得:OC=5.
∵四边形OABC是菱形,∴点B的坐标为(8,4).
∵点B在反比例函数(x>0)的图象上,
∴.
故选D.
9、C
【解析】
从正面看几何体,确定出主视图即可.
【详解】
解:几何体的主视图为
故选C.
【点睛】
本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
10、D
【解析】
试题分析:∵代数式有意义,
∴,
解得x≥0且x≠1.
故选D.
考点:二次根式,分式有意义的条件.
二、填空题(共7小题,每小题3分,满分21分)
11、5
【解析】
试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).
考点:圆锥的计算
12、±4
【解析】
根据平方差公式展开左边即可得出答案.
【详解】
∵(x-ay)(x+ay)=
又(x-ay)(x+ay)
∴
解得:a=±4
故答案为:±4.
【点睛】
本题考查的平方差公式:.
13、
【解析】
根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.
【详解】
如图,假设线段CD、AB交于点E,
∵AB是O的直径,弦CD⊥AB,
∴
又∵
∴
∴
∴S阴影=S扇形ODB−S△DOE+S△BEC
故答案为:.
【点睛】
考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.
14、14
【解析】
取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与△IDE全等的三角形构成.
【详解】
解:取AE中点I,连接IB.则正八边形ABCDEFGH是由8个与△IAB全等的三角形构成.
∵I是AE的中点,
∴ == =3,
则圆内接正八边形ABCDEFGH的面积为:8×3=14cm1.
故答案为14.
【点睛】
本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形.
15、73°
【解析】
试题解析:∵∠CBD=34°,
∴∠CBE=180°-∠CBD=146°,
∴∠ABC=∠ABE=∠CBE=73°.
16、x≠﹣.
【解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
【详解】
解:根据分式有意义的条件得:2x+3≠1
解得:
故答案为
【点睛】
本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
17、3 4
【解析】
先找到与11相邻的平方数9和16,求出算术平方根即可解题.
【详解】
解:∵,
∴,
∴无理数在连续整数3与4之间.
【点睛】
本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
三、解答题(共7小题,满分69分)
18、或
【解析】
把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案.
【详解】
把代入二元一次方程组得:
,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b= -2或b=1,
把b= -2代入①得:a+2=1,
解得:a= -1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.
19、100或200
【解析】
试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
列方程得,
(8+×4)=4800,
x2﹣300x+20000=0,
解得x1=200,x2=100;
要使百姓得到实惠,只能取x=200,
答:每台冰箱应降价200元.
考点:一元二次方程的应用.
20、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
【详解】
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
21、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
【详解】
解:(1)将A,B点坐标代入,得
,
解得,
抛物线的解析式为y=;
(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
2m=﹣1,
即m=﹣;
故答案为﹣;
②AB的解析式为
当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
联立PA与抛物线,得,
解得(舍),,
即P(6,﹣14);
当PB⊥AB时,PB的解析式为y=﹣2x+3,
联立PB与抛物线,得,
解得(舍),
即P(4,﹣5),
综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
(3)如图:
,
∵M(t,﹣t2+t+1),Q(t, t+),
∴MQ=﹣t2+
S△MAB=MQ|xB﹣xA|
=(﹣t2+)×2
=﹣t2+,
当t=0时,S取最大值,即M(0,1).
由勾股定理,得
AB==,
设M到AB的距离为h,由三角形的面积,得
h==.
点M到直线AB的距离的最大值是.
【点睛】
本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
22、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
【解析】
小军的证明:连接AP,利用面积法即可证得;
小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
[变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
[结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
[迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
【详解】
小军的证明:
连接AP,如图②
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP+S△ACP,
∴AB×CF=AB×PD+AC×PE,
∵AB=AC,
∴CF=PD+PE.
小俊的证明:
过点P作PG⊥CF,如图2,
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDG=∠FGP=90°,
∴四边形PDFG为矩形,
∴DP=FG,∠DPG=90°,
∴∠CGP=90°,
∵PE⊥AC,
∴∠CEP=90°,
∴∠PGC=∠CEP,
∵∠BDP=∠DPG=90°,
∴PG∥AB,
∴∠GPC=∠B,
∵AB=AC,
∴∠B=∠ACB,
∴∠GPC=∠ECP,
在△PGC和△CEP中
,
∴△PGC≌△CEP,
∴CG=PE,
∴CF=CG+FG=PE+PD;
[变式探究]
小军的证明思路:连接AP,如图③,
∵PD⊥AB,PE⊥AC,CF⊥AB,
∴S△ABC=S△ABP﹣S△ACP,
∴AB×CF=AB×PD﹣AC×PE,
∵AB=AC,
∴CF=PD﹣PE;
小俊的证明思路:
过点C,作CG⊥DP,如图③,
∵PD⊥AB,CF⊥AB,CG⊥DP,
∴∠CFD=∠FDG=∠DGC=90°,
∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
∵PE⊥AC,
∴∠CEP=90°,
∴∠CGP=∠CEP,
∵CG⊥DP,AB⊥DP,
∴∠CGP=∠BDP=90°,
∴CG∥AB,
∴∠GCP=∠B,
∵AB=AC,
∴∠B=∠ACB,
∵∠ACB=∠PCE,
∴∠GCP=∠ECP,
在△CGP和△CEP中,
,
∴△CGP≌△CEP,
∴PG=PE,
∴CF=DG=DP﹣PG=DP﹣PE.
[结论运用]
如图④
过点E作EQ⊥BC,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°,
∵AD=8,CF=3,
∴BF=BC﹣CF=AD﹣CF=5,
由折叠得DF=BF,∠BEF=∠DEF,
∴DF=5,
∵∠C=90°,
∴DC==1,
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC,
∴四边形EQCD是矩形,
∴EQ=DC=1,
∵AD∥BC,
∴∠DEF=∠EFB,
∵∠BEF=∠DEF,
∴∠BEF=∠EFB,
∴BE=BF,
由问题情景中的结论可得:PG+PH=EQ,
∴PG+PH=1.
∴PG+PH的值为1.
[迁移拓展]
延长AD,BC交于点F,作BH⊥AF,如图⑤,
∵AD×CE=DE×BC,
∴,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°,
∴△ADE∽△BCE,
∴∠A=∠CBE,
∴FA=FB,
由问题情景中的结论可得:ED+EC=BH,
设DH=x,
∴AH=AD+DH=3+x,
∵BH⊥AF,
∴∠BHA=90°,
∴BH2=BD2﹣DH2=AB2﹣AH2,
∵AB=2,AD=3,BD=,
∴()2﹣x2=(2)2﹣(3+x)2,
∴x=1,
∴BH2=BD2﹣DH2=37﹣1=36,
∴BH=6,
∴ED+EC=6,
∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
∴DM=EM=AE,CN=EN=BE,
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2,
∴△DEM与△CEN的周长之和(6+2)dm.
【点睛】
此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
23、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
【详解】
解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
根据题意得:
,
解得:
答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
根据题意得:
解得:
∵a为整数,
∴a≥1.
∵甲种树的单价比乙种树的单价贵,
∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
【点睛】
一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
24、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.
【解析】
试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
(4)结合(3)中函数图象求得时s的值,做差即可求解;
(5)求出函数图象的交点坐标即可求解.
试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
(2)(330﹣240)÷60=1.5(千米/分);
(3)设L1为 把点(0,330),(60,240)代入得
所以
设L2为 把点(60,60)代入得
所以
(4)当时,
330﹣150﹣120=60(千米);
所以2小时后,两车相距60千米;
(5)当时,
解得
即行驶132分钟,A、B两车相遇.
2023-2024学年山东省济宁市马营镇初级中学八年级数学第一学期期末经典试题含答案: 这是一份2023-2024学年山东省济宁市马营镇初级中学八年级数学第一学期期末经典试题含答案,共6页。试卷主要包含了下列二次根式中,最简二次根式是,下列图形中,是轴对称图形的有等内容,欢迎下载使用。
山东省济宁市马营镇初级中学2022-2023学年数学七下期末考试模拟试题含答案: 这是一份山东省济宁市马营镇初级中学2022-2023学年数学七下期末考试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果是等内容,欢迎下载使用。
山东省滕州市洪绪镇洪绪中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份山东省滕州市洪绪镇洪绪中学2021-2022学年中考冲刺卷数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。