|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析01
    山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析02
    山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析

    展开
    这是一份山东省青岛市市南区2021-2022学年十校联考最后数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,对于一组统计数据,计算--|-3|的结果是,下列方程中,是一元二次方程的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )

    A. B. C. D.
    2.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是(  )

    A.①②④ B.①②⑤ C.②③④ D.③④⑤
    3.一元二次方程(x+2017)2=1的解为( )
    A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
    4.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是(  )
    A. cm B.2 cm C.2cm D. cm
    5.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是(  )
    A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
    6.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    7.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
    A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5
    8.计算--|-3|的结果是(  )
    A.-1 B.-5 C.1 D.5
    9.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是  

    A. B. C. D.
    10.下列方程中,是一元二次方程的是(  )
    A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
    11.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为(  )

    A.6 B.12 C.18 D.24
    12.若关于x的不等式组恰有3个整数解,则字母a的取值范围是(  )
    A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.

    14.化简二次根式的正确结果是_____.
    15.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.

    16.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.

    17.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.

    18.将2.05×10﹣3用小数表示为__.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    20.(6分)解不等式组:.
    21.(6分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.

    (1)求出A,B两点的坐标;
    (2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
    (3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
    22.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    23.(8分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).
    (1)求抛物线l2的函数表达式;
    (2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;
    (3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.

    24.(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.

    (1)求证:OE=OF;
    (2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
    25.(10分)如下表所示,有A、B两组数:

    第1个数
    第2个数
    第3个数
    第4个数
    ……
    第9个数
    ……
    第n个数
    A组
    ﹣6
    ﹣5
    ﹣2

    ……
    58
    ……
    n2﹣2n﹣5
    B组
    1
    4
    7
    10
    ……
    25
    ……

    (1)A组第4个数是   ;用含n的代数式表示B组第n个数是   ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
    26.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.

    27.(12分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
    求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.
    【详解】
    解:由图表数据描点连线,补全图像可得如图,

    抛物线对称轴在36和54之间,约为41℃
    ∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.
    故选:C,
    【点睛】
    本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.
    2、A
    【解析】
    由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.
    【详解】
    ①∵对称轴在y轴右侧,
    ∴a、b异号,
    ∴ab<2,故正确;
    ②∵对称轴
    ∴2a+b=2;故正确;
    ③∵2a+b=2,
    ∴b=﹣2a,
    ∵当x=﹣1时,y=a﹣b+c<2,
    ∴a﹣(﹣2a)+c=3a+c<2,故错误;
    ④根据图示知,当m=1时,有最大值;
    当m≠1时,有am2+bm+c≤a+b+c,
    所以a+b≥m(am+b)(m为实数).
    故正确.
    ⑤如图,当﹣1<x<3时,y不只是大于2.
    故错误.
    故选A.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定
    抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项
    系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴
    左; 当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛
    物线与y轴交点,抛物线与y轴交于(2,c).
    3、A
    【解析】
    利用直接开平方法解方程.
    【详解】
    (x+2017)2=1
    x+2017=±1,
    所以x1=-2018,x2=-1.
    故选A.
    【点睛】
    本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
    4、B
    【解析】
    由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
    【详解】
    解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
    故选择B.
    【点睛】
    本题考查了圆锥的概念和弧长的计算.
    5、C
    【解析】
    根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
    【详解】
    解:∵抛物线和轴有交点,
    ,
    解得:且.
    故选.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
    6、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    7、D
    【解析】
    根据平均数、中位数、众数和方差的定义逐一求解可得.
    【详解】
    解:A、平均数为=3,正确;
    B、重新排列为1、2、3、3、6,则中位数为3,正确;
    C、众数为3,正确;
    D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
    故选:D.
    【点睛】
    本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    8、B
    【解析】
    原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值.
    【详解】
    原式
    故选:B.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    9、C
    【解析】
    如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
    【详解】
    如图作,FN∥AD,交AB于N,交BE于M.

    ∵四边形ABCD是正方形,
    ∴AB∥CD,∵FN∥AD,
    ∴四边形ANFD是平行四边形,
    ∵∠D=90°,
    ∴四边形ANFD是矩形,
    ∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
    ∵AN=BN,MN∥AE,
    ∴BM=ME,
    ∴MN=a,
    ∴FM=a,
    ∵AE∥FM,
    ∴,
    故选C.
    【点睛】
    本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
    10、D
    【解析】
    试题解析:含有两个未知数,不是整式方程,C没有二次项.
    故选D.
    点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
    11、B
    【解析】
    ∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
    ∵AC的垂直平分线交AD于点E,∴AE=CE,
    ∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
    故选B.
    12、B
    【解析】
    根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
    【详解】
    解:∵x的不等式组恰有3个整数解,
    ∴整数解为1,0,-1,
    ∴-2≤a<-1.
    故选B.
    【点睛】
    本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、∠BAD=90° (不唯一)
    【解析】
    根据正方形的判定定理添加条件即可.
    【详解】
    解:∵平行四边形 ABCD的对角线AC与BD相交于点O,且AC⊥BD,
    ∴四边形ABCD是菱形,
    当∠BAD=90°时,四边形ABCD为正方形.
    故答案为:∠BAD=90°.
    【点睛】
    本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.
    14、﹣a
    【解析】
    , .
    .
    15、
    【解析】
    过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
    【详解】

    过点E作EF⊥BC交BC于点F.
    ∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
    又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
    ∴BF=6
    ∴在Rt△BEF中BE==,
    又∵△BGD∽△BEF
    ∴,即BG=.
    GE=BE-BG=
    故答案为.
    【点睛】
    本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
    16、8
    【解析】
    试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程组即可求解.
    过B 点作于点,与交于点,
    设AF=x,,

    ,(负值舍去).
    故BD+DE的值是8
    故答案为8

    考点:轴对称-最短路线问题.
    17、1
    【解析】
    试题解析:∵总人数为14÷28%=50(人),
    ∴该年级足球测试成绩为D等的人数为(人).
    故答案为:1.
    18、0.1
    【解析】试题解析:原式=2.05×10-3=0.1.
    【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    20、﹣4≤x<1
    【解析】
    先求出各不等式的
    【详解】

    解不等式x﹣1<2,得:x<1,
    解不等式2x+1≥x﹣1,得:x≥﹣4,
    则不等式组的解集为﹣4≤x<1.
    【点睛】
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    21、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
    【解析】
    分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在⊙M上,那么C点必为抛物线对称轴与⊙O的交点;根据A、B的坐标可求出AB的长,进而可得到⊙M的半径及C点的坐标,再用待定系数法求解即可;
    (3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理:
    ∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标.
    本题解析:(1)对于直线,当时,;当时,
    所以A(﹣8,0),B(0,﹣6);
    (2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,
    ∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),
    设抛物线的解析式为y=a(x+4)²+2,
    把B(0,﹣6)代入得16a+2=﹣6,解得a= ,
    ∴抛物线的解析式为 ,即;
    (3)存在.
    当y=0时, ,解得x,=﹣2,x,=﹣6,
    ∴D(﹣6,0),E(﹣2,0),

    设P(t,-6),

    ∴=20,
    即||=1,当=-1,
    解得, ,
    此时P点坐标为(﹣4+,-1)或(﹣4﹣,-1);
    当时 ,解得=﹣4+,=﹣4﹣;
    此时P点坐标为(﹣4+,1)或(﹣4﹣,1).

    综上所述,P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
    点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.
    22、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    23、(1)抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.
    【解析】
    (1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.
    【详解】
    (1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,
    ∴x=﹣=1,b=2,
    ∴抛物线l1的函数表达式为:y=﹣x2+2x+3,
    当y=0时,﹣x2+2x+3=0,
    解得:x1=3,x2=﹣1,
    ∴A(﹣1,0),B(3,0),
    设抛物线l2的函数表达式;y=a(x﹣1)(x+1),
    把D(0,﹣1)代入得:﹣1a=﹣1,a=1,
    ∴抛物线l2的函数表达式;y=x2﹣4x﹣1;
    (2)作CH⊥PG交直线PG于点H,
    设P点坐标为(1,y),由(1)可得C点坐标为(0,3),
    ∴CH=1,PH=|3﹣y |,PG=|y |,AG=2,
    ∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2= =y2+4,
    ∵PC=PA,
    ∴PA2=PC2,
    ∴y2﹣6y+10=y2+4,解得y=1,
    ∴P点坐标为(1,1);

    (3)由题意可设M(x,x2﹣4x﹣1),
    ∵MN∥y轴,
    ∴N(x,﹣x2+2x+3),
    令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,
    ①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,
    显然﹣1<≤4,
    ∴当x=时,MN有最大值12.1;
    ②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,
    显然当x>时,MN随x的增大而增大,
    ∴当x=1时,MN有最大值,MN=2(1﹣)2﹣=12.
    综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.
    【点睛】
    本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.
    24、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
    【解析】
    (1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
    (2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥CD,OB=OD,
    ∴∠OAE=∠OCF,
    在△OAE和△OCF中,

    ∴△AOE≌△COF(ASA),
    ∴OE=OF;
    (2)∵OE=OF,OB=OD,
    ∴四边形DEBF是平行四边形,
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴四边形DEBF是矩形,
    ∴BD=EF,
    ∴OD=OB=OE=OF=BD,
    ∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
    【点睛】
    本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
    25、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
    【解析】
    (1)将n=4代入n2-2n-5中即可求解;
    (2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
    (3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
    【详解】
    解:(1))∵A组第n个数为n2-2n-5,
    ∴A组第4个数是42-2×4-5=3,
    故答案为3;
    (2)第n个数是.
    理由如下:
    ∵第1个数为1,可写成3×1-2;
    第2个数为4,可写成3×2-2;
    第3个数为7,可写成3×3-2;
    第4个数为10,可写成3×4-2;
    ……
    第9个数为25,可写成3×9-2;
    ∴第n个数为3n-2;
    故答案为3n-2;
    (3)不存在同一位置上存在两个数据相等;
    由题意得,,
    解之得,
    由于是正整数,所以不存在列上两个数相等.
    【点睛】
    本题考查了数字的变化类,正确的找出规律是解题的关键.
    26、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
    27、解:(1)该校班级个数为4÷20%=20(个),
    只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),
    该校平均每班留守儿童的人数为:
    =4(名),
    补图如下:

    (2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,

    有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,
    则所选两名留守儿童来自同一个班级的概率为:=.
    【解析】
    (1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;
    (2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.

    相关试卷

    山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析: 这是一份山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了下列判断错误的是等内容,欢迎下载使用。

    山东省青岛市即墨区重点中学2021-2022学年十校联考最后数学试题含解析: 这是一份山东省青岛市即墨区重点中学2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,tan30°的值为等内容,欢迎下载使用。

    2022年山东省青岛市青岛实验重点中学十校联考最后数学试题含解析: 这是一份2022年山东省青岛市青岛实验重点中学十校联考最后数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列实数为无理数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map