|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东省郯城育才中学2021-2022学年中考数学模试卷含解析
    立即下载
    加入资料篮
    山东省郯城育才中学2021-2022学年中考数学模试卷含解析01
    山东省郯城育才中学2021-2022学年中考数学模试卷含解析02
    山东省郯城育才中学2021-2022学年中考数学模试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省郯城育才中学2021-2022学年中考数学模试卷含解析

    展开
    这是一份山东省郯城育才中学2021-2022学年中考数学模试卷含解析,共20页。试卷主要包含了2018的相反数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
    A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
    2.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是(  )
    A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
    3.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为

    A.12 B.20 C.24 D.32
    4.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).

    A. B. C. D.
    5.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为(  )

    A. B. C. D.4﹣
    6.2018的相反数是( )
    A. B.2018 C.-2018 D.
    7.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
    A. B. C. D.
    8.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    9.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(  )
    A.1,2,3 B.1,1, C.1,1, D.1,2,
    10.如图图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
    品种

    第1年

    第2年

    第3年

    第4年

    第5年

    品种



    9.8

    9.9

    10.1

    10

    10.2





    9.4

    10.3

    10.8

    9.7

    9.8



    经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
    12.分解因式:9x3﹣18x2+9x= .
    13.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.

    14.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.

    15.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .

    16.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.

    17.若-2amb4与5a2bn+7是同类项,则m+n= .
    三、解答题(共7小题,满分69分)
    18.(10分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:

    (1)这次参与调查的村民人数为   人;
    (2)请将条形统计图补充完整;
    (3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
    (4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
    19.(5分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    20.(8分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.

    21.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.

    (1)设四边形PQCB的面积为S,求S与t的关系式;
    (2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
    (3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
    22.(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.

    23.(12分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

    24.(14分)先化简,然后从中选出一个合适的整数作为的值代入求值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
    考点:科学记数法.
    2、D
    【解析】
    【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
    【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
    ∵x1+x2<0,x1x2<0,
    ∴x1、x2异号,且负数的绝对值大,故C选项错误;
    ∵x1为一元二次方程2x2+2x﹣1=0的根,
    ∴2x12+2x1﹣1=0,
    ∴x12+x1=,故D选项正确,
    故选D.
    【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
    3、D
    【解析】
    如图,过点C作CD⊥x轴于点D,

    ∵点C的坐标为(3,4),∴OD=3,CD=4.
    ∴根据勾股定理,得:OC=5.
    ∵四边形OABC是菱形,∴点B的坐标为(8,4).
    ∵点B在反比例函数(x>0)的图象上,
    ∴.
    故选D.
    4、B
    【解析】
    如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
    【详解】
    如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B

    【点睛】
    本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
    5、D
    【解析】
    首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE是∠DEB的平分线,
    ∴∠BEA=∠AED,
    ∴∠DAE=∠AED,
    ∴DE=AD=4,
    再Rt△DEC中,EC===,
    ∴BE=BC-EC=4-.
    故答案选D.
    【点睛】
    本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.
    6、C
    【解析】
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】2018与-2018只有符号不同,
    由相反数的定义可得2018的相反数是-2018,
    故选C.
    【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
    7、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
    【详解】
    画树状图如下:

    由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
    所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
    故选B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    8、B
    【解析】
    【分析】根据同一时刻物高与影长成正比可得出结论.
    【详解】设竹竿的长度为x尺,
    ∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
    ∴,
    解得x=45(尺),
    故选B.
    【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
    9、D
    【解析】
    根据三角形三边关系可知,不能构成三角形,依此即可作出判定; 
    B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定; 
    C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
    D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
    【详解】
    ∵1+2=3,不能构成三角形,故选项错误; 
    B、∵12+12=()2,是等腰直角三角形,故选项错误; 
    C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误; 
    D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
    故选D.
    10、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故A不正确;
    B、既是轴对称图形,又是中心对称图形,故B正确;
    C、是轴对称图形,不是中心对称图形,故C不正确;
    D、既不是轴对称图形,也不是中心对称图形,故D不正确.
    故选B.
    【点睛】
    本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.

    二、填空题(共7小题,每小题3分,满分21分)
    11、甲
    【解析】
    根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
    【详解】
    甲种水稻产量的方差是:

    乙种水稻产量的方差是:

    ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
    12、9x
    【解析】
    试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.
    考点:因式分解
    13、32°
    【解析】
    根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.
    【详解】
    ∵AB是⊙O的直径, 
    ∴∠ADB=90°, 
    ∵∠ABD=58°, 
    ∴∠A=32°, 
    ∴∠BCD=32°, 
    故答案为32°.
    14、(20,4) (10086,0)
    【解析】
    首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.
    【详解】
    解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.
    ∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).
    故答案为(20,4)、(10086,0).
    【点睛】
    本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.
    15、2.
    【解析】
    先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
    【详解】
    由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
    ∵线段OA的垂直平分线交OC于点B,∴OB=AB.
    则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
    ∴△ABC周长的值是2.
    16、SSS.
    【解析】
    由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
    【详解】
    由图可知,CM=CN,又OM=ON,
    ∵在△MCO和△NCO中

    ∴△COM≌△CON(SSS),
    ∴∠AOC=∠BOC,
    即OC是∠AOB的平分线.
    故答案为:SSS.
    【点睛】
    本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
    17、-1.
    【解析】
    试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
    试题解析:由-2amb4与5a2bn+7是同类项,得

    解得.
    ∴m+n=-1.
    考点:同类项.

    三、解答题(共7小题,满分69分)
    18、 (1)120;(2)42人;(3) 90°;(4)
    【解析】
    (1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;
    (2)利用条形统计图以及样本数量得出喜欢广场舞的人数;
    (3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;
    (4)利用树状图法列举出所有的可能进而得出概率.
    【详解】
    (1)这次参与调查的村民人数为:24÷20%=120(人);
    故答案为:120;
    (2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),
    如图所示:

    (3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;
    (4)如图所示:

    一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,
    故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.
    【点睛】
    此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.
    19、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    20、证明过程见解析
    【解析】
    由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.
    【详解】
    ∵∠BAE=∠BCE=∠ACD=90°,
    ∴∠5+∠4=∠4+∠3,
    ∴∠5=∠3,且∠B+∠CEA=180°,
    又∠7+∠CEA=180°,
    ∴∠B=∠7,
    在△ABC和△DEC中 ,
    ∴△ABC≌△DEC(ASA).
    21、 (1) S=﹣2(0<t<1); (2) ;(3)见解析.
    【解析】
    (1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
    (2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
    (3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
    【详解】
    解:(1)如图1,∵四边形ABCD是菱形,
    ∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
    ∴∠OAB=30°,
    ∵AB=20,
    ∴OB=10,AO=10,
    由题意得:AP=4t,
    ∴PQ=2t,AQ=2t,
    ∴S=S△ABC﹣S△APQ,
    =,
    = ,
    =﹣2t2+100(0<t<1);
    (2)如图2,在Rt△APM中,AP=4t,
    ∵点Q关于O的对称点为M,
    ∴OM=OQ,
    设PM=x,则AM=2x,
    ∴AP=x=4t,
    ∴x=,
    ∴AM=2PM=,
    ∵AM=AO+OM,
    ∴=10+10﹣2t,
    t=;
    答:当t为秒时,点P、M、N在一直线上;
    (3)存在,
    如图3,∵直线PN平分四边形APMN的面积,
    ∴S△APN=S△PMN,
    过M作MG⊥PN于G,
    ∴ ,
    ∴MG=AP,
    易得△APH≌△MGH,
    ∴AH=HM=t,
    ∵AM=AO+OM,
    同理可知:OM=OQ=10﹣2t,
    t=10=10﹣2t,
    t=.
    答:当t为秒时,使得直线PN平分四边形APMN的面积.

    【点睛】
    考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
    22、(1)证明见解析;(2).
    【解析】
    (2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;
    (2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.
    解:(1)∵AB=AC,∴∠B=∠C.
    ∵∠APD=∠B,∴∠APD=∠B=∠C.
    ∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,
    ∴∠BAP=∠DPC,
    ∴△ABP∽△PCD,
    ∴,
    ∴AB•CD=CP•BP.
    ∵AB=AC,
    ∴AC•CD=CP•BP;
    (2)∵PD∥AB,∴∠APD=∠BAP.
    ∵∠APD=∠C,∴∠BAP=∠C.
    ∵∠B=∠B,
    ∴△BAP∽△BCA,
    ∴.
    ∵AB=10,BC=12,
    ∴,
    ∴BP=.
    “点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C进而得到△BAP∽△BCA是解决第(2)小题的关键.
    23、(1)E(2,1);(2);(1).
    【解析】
    (1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
    (2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
    (1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
    【详解】
    (1)∵OA=1,OB=4,
    ∴B(4,0),C(4,1),
    ∵F是BC的中点,
    ∴F(4,),
    ∵F在反比例y=函数图象上,
    ∴k=4×=6,
    ∴反比例函数的解析式为y=,
    ∵E点的坐标为1,
    ∴E(2,1);
    (2)∵F点的横坐标为4,
    ∴F(4,),
    ∴CF=BC﹣BF=1﹣=
    ∵E的纵坐标为1,
    ∴E(,1),
    ∴CE=AC﹣AE=4﹣=,
    在Rt△CEF中,tan∠EFC=,
    (1)如图,由(2)知,CF=,CE=,,
    过点E作EH⊥OB于H,

    ∴EH=OA=1,∠EHG=∠GBF=90°,
    ∴∠EGH+∠HEG=90°,
    由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
    ∴∠EGH+∠BGF=90°,
    ∴∠HEG=∠BGF,
    ∵∠EHG=∠GBF=90°,
    ∴△EHG∽△GBF,
    ∴,
    ∴,
    ∴BG=,
    在Rt△FBG中,FG2﹣BF2=BG2,
    ∴()2﹣()2=,
    ∴k=,
    ∴反比例函数解析式为y=.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
    24、-1
    【解析】
    先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
    【详解】
    解:



    当时,原式.
    【点睛】
    本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.

    相关试卷

    2023年山东省临沂市郯城县中考数学一模试卷(含解析): 这是一份2023年山东省临沂市郯城县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省临沂市郯城县中考数学一模试卷(含解析): 这是一份2023年山东省临沂市郯城县中考数学一模试卷(含解析),共26页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2022届山东省青岛育才中学中考数学最后一模试卷含解析: 这是一份2022届山东省青岛育才中学中考数学最后一模试卷含解析,共21页。试卷主要包含了下列计算结果正确的是,点P等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map