终身会员
搜索
    上传资料 赚现金

    山西省洪洞县重点名校2022年中考数学押题卷含解析

    立即下载
    加入资料篮
    山西省洪洞县重点名校2022年中考数学押题卷含解析第1页
    山西省洪洞县重点名校2022年中考数学押题卷含解析第2页
    山西省洪洞县重点名校2022年中考数学押题卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省洪洞县重点名校2022年中考数学押题卷含解析

    展开

    这是一份山西省洪洞县重点名校2022年中考数学押题卷含解析,共23页。试卷主要包含了若a与﹣3互为倒数,则a=,下列计算中正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列方程中,没有实数根的是(  )
    A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
    2.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为(  )

    A.:1 B.2: C.2:1 D.29:14
    3.如图,在中,分别在边边上,已知,则的值为( )

    A. B. C. D.
    4.若a与﹣3互为倒数,则a=(  )
    A.3 B.﹣3 C. D.-
    5.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )

    A. B. C. D.
    6.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积(  )

    A.65π B.90π C.25π D.85π
    7.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是(  )
    A. B.
    C. D.
    8.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是(  )
    A.5 B.4 C.3 D.2
    9.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是(  )

    A. B. C. D.
    10.下列计算中正确的是(  )
    A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x
    11.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为( )
    A.–1 B.2 C.1 D.–2
    12.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AB=AC,∠A=36°, BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则= .
    14.若有意义,则x的范围是_____.
    15.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.
    16.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.






    7
    8
    8
    7
    s2
    1
    1.2
    0.9
    1.8

    17.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.
    18.分解因式:x3y﹣2x2y+xy=______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
    (1)求证:直线BF是⊙O的切线;
    (2)若AB=5,sin∠CBF=,求BC和BF的长.

    20.(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
    (1)求该反比例函数的解析式.
    (2)求S与t的函数关系式;并求当S=时,对应的t值.
    (3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.

    21.(6分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.

    求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
    22.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
    收费方式
    月使用费/元
    包时上网时间/h
    超时费/(元/min)
    A
    7
    25
    0.01
    B
    m
    n
    0.01
    设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.
    (1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= ;
    (2)写出yA与x之间的函数关系式;
    (3)选择哪种方式上网学习合算,为什么.

    23.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
    (1)求∠EAD的余切值;
    (2)求的值.

    24.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    25.(10分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1.
    (1)求反比例函数的解析式;
    (2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.

    26.(12分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).

    27.(12分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=,求阴影部分的面积.(结果保留和根号).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
    【详解】
    A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
    B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
    C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
    D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
    故选D.
    2、A
    【解析】
    试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
    故选A.
    考点:反比例函数系数k的几何意义
    3、B
    【解析】
    根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
    【详解】
    解:∵,
    ∴,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    故选:B.
    【点睛】
    本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
    4、D
    【解析】
    试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
    ∴a=,
    故选C.
    考点:倒数.
    5、C
    【解析】
    A、B、D不是该几何体的视图,C是主视图,故选C.
    【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
    6、B
    【解析】
    根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.
    【详解】
    由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,
    所以圆锥的母线长==13,
    所以圆锥的表面积=π×52+×2π×5×13=90π.
    故选B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
    7、C
    【解析】
    根据轴对称和中心对称的定义去判断即可得出正确答案.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、不是轴对称图形,也不是中心对称图形,故此选项错误;
    C、是轴对称图形,也是中心对称图形,故此选项正确;
    D、是轴对称图形,不是中心对称图形,故此选项错误.
    故选:C.
    【点睛】
    本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
    8、D
    【解析】
    由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
    【详解】
    不等式组整理得:,
    由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
    即-2<a≤4,即a=-1,0,1,2,3,4,
    分式方程去分母得:5-y+3y-3=a,即y=,
    由分式方程有整数解,得到a=0,2,共2个,
    故选:D.
    【点睛】
    本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    9、D
    【解析】试题分析:俯视图是从上面看到的图形.
    从上面看,左边和中间都是2个正方形,右上角是1个正方形,
    故选D.
    考点:简单组合体的三视图
    10、C
    【解析】
    根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.
    【详解】
    A. x2+x2=2x2 ,故不正确;
    B. x6÷x3=x3 ,故不正确;
    C. (x3)2=x6 ,故正确;
    D. x﹣1=,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.
    11、C
    【解析】
    把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可.
    【详解】
    把x=1代入x2+mx+n=0,
    代入1+m+n=0,
    ∴m+n=-1,
    ∴m2+2mn+n2=(m+n)2=1.
    故选C.
    【点睛】
    本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.
    12、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题分析:因为△ABC中,AB=AC,∠A=36°
    所以∠ABC=∠ACB=72°
    因为BD平分∠ABC交AC于点D
    所以∠ABD=∠CBD=36°=∠A
    因为DE平分∠BDC交BC于点E
    所以∠CDE=∠BDE=36°=∠A
    所以AD=BD=BC
    根据黄金三角形的性质知,
    ,,

    所以
    考点:黄金三角形
    点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,
    14、x≤1.
    【解析】
    根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.
    【详解】
    依题意得:1﹣x≥0且x﹣3≠0,
    解得:x≤1.
    故答案是:x≤1.
    【点睛】
    本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.
    15、m>1
    【解析】
    试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
    试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
    联立两直线解析式得:,
    解得:,
    即交点坐标为(,),
    ∵交点在第一象限,
    ∴,
    解得:m>1.
    考点:一次函数图象与几何变换.
    16、丙
    【解析】
    先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
    【详解】
    因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
    所以丙组的成绩比较稳定,
    所以丙组的成绩较好且状态稳定,应选的组是丙组.
    故答案为丙.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
    17、
    【解析】
    根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.
    【详解】
    数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.
    故答案为+1.
    【点睛】
    本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.
    18、xy(x﹣1)1
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    解:原式=xy(x1-1x+1)=xy(x-1)1.
    故答案为:xy(x-1)1
    【点睛】
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)BC=;.
    【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.
    (2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.
    (1)证明:连接AE,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴∠1+∠2=90°.
    ∵AB=AC,
    ∴∠1=∠CAB.
    ∵∠CBF=∠CAB,
    ∴∠1=∠CBF
    ∴∠CBF+∠2=90°
    即∠ABF=90°
    ∵AB是⊙O的直径,
    ∴直线BF是⊙O的切线.
    (2)解:过点C作CG⊥AB于G.

    ∵sin∠CBF=,∠1=∠CBF,
    ∴sin∠1=,
    ∵在Rt△AEB中,∠AEB=90°,AB=5,
    ∴BE=AB•sin∠1=,
    ∵AB=AC,∠AEB=90°,
    ∴BC=2BE=2,
    在Rt△ABE中,由勾股定理得AE==2,
    ∴sin∠2===,cos∠2===,
    在Rt△CBG中,可求得GC=4,GB=2,
    ∴AG=3,
    ∵GC∥BF,
    ∴△AGC∽△ABF,
    ∴=.
    ∴BF==.
    20、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
    【解析】
    (1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
    (2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
    (3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
    【详解】
    解:(1)∵正方形OABC的面积为9,
    ∴点B的坐标为:(3,3),
    ∵点B在反比例函数y=(k>0,x>0)的图象上,
    ∴3=,
    即k=9,
    ∴该反比例函数的解析式为:y= y=(x>0);
    (2)根据题意得:P(t,),
    分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
    若S=,
    则﹣3t+9=,
    解得:t=;
    ②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
    若S=,则9﹣=,
    解得:t=6;
    ∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
    当S=时,对应的t值为或6;
    (3)存在.
    若OB=BF=3,此时CF=BC=3,
    ∴OF=6,
    ∴6=,
    解得:t=;
    若OB=OF=3,则3=,
    解得:t= ;
    若BF=OF,此时点F与C重合,t=3;
    ∴当t=或或3时,使△FBO为等腰三角形.
    【点睛】
    此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
    21、证明见解析
    【解析】
    证明:(1)∵DF∥BE,
    ∴∠DFE=∠BEF.
    又∵AF=CE,DF=BE,
    ∴△AFD≌△CEB(SAS).
    (2)由(1)知△AFD≌△CEB,
    ∴∠DAC=∠BCA,AD=BC,
    ∴AD∥BC.
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
    (1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
    (2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.
    22、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.
    【解析】
    (1)由图象知:m=10,n=50;
    (2)根据已知条件即可求得yA与x之间的函数关系式为:当x≤25时,yA=7;当x>25时,yA=7+(x﹣25)×0.01;
    (3)先求出yB与x之间函数关系为:当x≤50时,yB=10;当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.
    【详解】
    解:(1)由图象知:m=10,n=50;
    故答案为:10;50;
    (2)yA与x之间的函数关系式为:
    当x≤25时,yA=7,
    当x>25时,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,
    ∴yA=;
    (3)∵yB与x之间函数关系为:
    当x≤50时,yB=10,
    当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20,
    当0<x≤25时,yA=7,yB=50,
    ∴yA<yB,∴选择A方式上网学习合算,
    当25<x≤50时.yA=yB,即0.6x﹣8=10,解得;x=30,
    ∴当25<x<30时,yA<yB,选择A方式上网学习合算,
    当x=30时,yA=yB,选择哪种方式上网学习都行,
    当30<x≤50,yA>yB,选择B方式上网学习合算,
    当x>50时,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴选择B方式上网学习合算,
    综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x>30时,yA>yB,选择B方式上网学习合算.
    【点睛】
    本题考查一次函数的应用.
    23、(1)∠EAD的余切值为;(2)=.
    【解析】
    (1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;
    (2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
    【详解】
    (1)∵BD⊥AC,
    ∴∠ADE=90°,
    Rt△ADB中,AB=13,cos∠BAC=,
    ∴AD=5, 由勾股定理得:BD=12,
    ∵E是BD的中点,
    ∴ED=6,
    ∴∠EAD的余切==;
    (2)过D作DG∥AF交BC于G,
    ∵AC=8,AD=5, ∴CD=3,
    ∵DG∥AF,
    ∴=,
    设CD=3x,AD=5x,
    ∵EF∥DG,BE=ED,
    ∴BF=FG=5x,
    ∴==.

    【点睛】
    本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.
    24、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    25、(1)y=;(2)(4,0)或(0,0)
    【解析】
    (1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;
    (2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.
    【详解】
    解:(1)把x=1代入y=2x﹣4,可得
    y=2×1﹣4=2,
    ∴A(1,2),
    把(1,2)代入y=,可得k=1×2=6,
    ∴反比例函数的解析式为y=;
    (2)根据题意可得:2x﹣4=,
    解得x1=1,x2=﹣1,
    把x2=﹣1,代入y=2x﹣4,可得
    y=﹣6,
    ∴点B的坐标为(﹣1,﹣6).
    设直线AB与x轴交于点C,
    y=2x﹣4中,令y=0,则x=2,即C(2,0),
    设P点坐标为(x,0),则
    ×|x﹣2|×(2+6)=8,
    解得x=4或0,
    ∴点P的坐标为(4,0)或(0,0).
    【点睛】本题主要考查用待定系数法求
    一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
    26、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
    【解析】
    试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
    (2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
    试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
    ∴,
    设DE=5x米,则EC=12x米,
    ∴(5x)2+(12x)2=132,
    解得:x=1,
    ∴5x=5,12x=12,
    即DE=5米,EC=12米,
    故斜坡CD的高度DE是5米;
    (2)过点D作AB的垂线,垂足为H,设DH的长为x,
    由题意可知∠BDH=45°,
    ∴BH=DH=x,DE=5,
    在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
    ∵tan64°=,
    ∴2=,
    解得,x=29,AB=x+5=34,
    即大楼AB的高度是34米.
    27、(1)详见解析;(2);
    【解析】
    (1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论;
    (2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论.
    【详解】
    :(1)连接OC,
    ∵OF⊥AB,
    ∴∠AOF=90°,
    ∴∠A+∠AFO+90°=180°,
    ∵∠ACE+∠AFO=180°,
    ∴∠ACE=90°+∠A,
    ∵OA=OC,
    ∴∠A=∠ACO,
    ∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
    ∴∠OCE=90°,
    ∴OC⊥CE,
    ∴EM是⊙O的切线;
    (2)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
    ∴∠ACO=∠BCE,
    ∵∠A=∠E,
    ∴∠A=∠ACO=∠BCE=∠E,
    ∴∠ABC=∠BCO+∠E=2∠A,
    ∴∠A=30°,
    ∴∠BOC=60°,
    ∴△BOC是等边三角形,
    ∴OB=BC=,
    ∴阴影部分的面积=,
    【点睛】
    本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键.

    相关试卷

    山西省朔州市朔城区重点名校2021-2022学年中考数学押题卷含解析:

    这是一份山西省朔州市朔城区重点名校2021-2022学年中考数学押题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,估计+1的值在等内容,欢迎下载使用。

    2022年山西省洪洞县重点名校中考数学最后冲刺模拟试卷含解析:

    这是一份2022年山西省洪洞县重点名校中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,计算6m6÷,下列各式计算正确的是等内容,欢迎下载使用。

    2022届内蒙古昆都仑区重点名校中考数学押题卷含解析:

    这是一份2022届内蒙古昆都仑区重点名校中考数学押题卷含解析,共17页。试卷主要包含了若a+b=3,,则ab等于,已知x+=3,则x2+=等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map