山东省淄博市周村县2021-2022学年中考三模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是( )
A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD
2.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是( ).
A.36° B.54° C.72° D.30°
3.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
4.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( )
A. B.2 C.2 D.4
5.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
A.–999×(52+49)=–999×101=–100899
B.–999×(52+49–1)=–999×100=–99900
C.–999×(52+49+1)=–999×102=–101898
D.–999×(52+49–99)=–999×2=–1998
6.“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
7.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
8.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )
A.着 B.沉 C.应 D.冷
9.已知反比例函数,下列结论不正确的是( )
A.图象经过点(﹣2,1) B.图象在第二、四象限
C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
10.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( )
A.﹣1 B.0 C.1或﹣1 D.2或0
二、填空题(共7小题,每小题3分,满分21分)
11.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.
12.某市居民用电价格如表所示:
用电量 | 不超过a千瓦时 | 超过a千瓦时的部分 |
单价(元/千瓦时) | 0.5 | 0.6 |
小芳家二月份用电200千瓦时,交电费105元,则a=______.
13.当x=_____时,分式 值为零.
14.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.
15.不等式组的解集是 ▲ .
16.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.
17.小青在八年级上学期的数学成绩如下表所示.
| 平时测验 | 期中考试 | 期末考试 |
成绩 | 86 | 90 | 81 |
如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.
三、解答题(共7小题,满分69分)
18.(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?
19.(5分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?
20.(8分)先化简,再求值:,其中,a、b满足.
21.(10分)计算:|﹣1|+(﹣1)2018﹣tan60°
22.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.
23.(12分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
24.(14分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
(1)求二次函数的表达式;
(2)当﹣<x<1时,请求出y的取值范围;
(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.
考点:角平分线的性质;全等三角形的判定.
2、A
【解析】
由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.
【详解】
解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.
又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.
故选A.
【点睛】
本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
3、B
【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
【详解】
解:∵反比例函数的图象位于一三象限,
∴m>0
故①错误;
当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
∵m>0
∴h<k
故③正确;
将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
故④正确,
故选:B.
【点睛】
本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.
4、B
【解析】
圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
【详解】
解:∵圆内接正六边形的边长是1,
∴圆的半径为1.
那么直径为2.
圆的内接正方形的对角线长为圆的直径,等于2.
∴圆的内接正方形的边长是1.
故选B.
【点睛】
本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
5、B
【解析】
根据乘法分配律和有理数的混合运算法则可以解答本题.
【详解】
原式=-999×(52+49-1)=-999×100=-1.
故选B.
【点睛】
本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
6、D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.
7、D
【解析】
圆锥的侧面积=×80π×90=3600π(cm2) .
故选D.
8、A
【解析】
正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答
【详解】
这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.
故选:A
【点睛】
本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键
9、D
【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.
10、A
【解析】
把x=﹣1代入方程计算即可求出k的值.
【详解】
解:把x=﹣1代入方程得:1+2k+k2=0,
解得:k=﹣1,
故选:A.
【点睛】
此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
二、填空题(共7小题,每小题3分,满分21分)
11、1或9
【解析】
(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示
∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAE,
∴∠OAD=∠ODA=∠DAC,
∴OD//AE,
∵DE是圆的切线,
∴DE⊥OD,
∴∠ODE=∠E=90o,
∴四边形ODEF是矩形,
∴OF=DE,EF=OD=5,
又∵OF⊥AC,
∴AF=,
∴AE=AF+EF=5+4=9.
(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示
同(1)可得:EF=OD=5,OF=DE=3,
在直角三角形AOF中,AF=,
∴AE=EF-AF=5-4=1.
12、150
【解析】
根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.
【详解】
∵0.5×200=100<105,
∴a<200.
由题意得:0.5a+0.6(200-a)=105,
解得:a=150.
故答案为:150
【点睛】
此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.
13、﹣1.
【解析】
试题解析:分式的值为0,
则:
解得:
故答案为
14、2
【解析】
设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.
【详解】
解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,
解得, ,
则y=30x-1.
当y=0时,
30x-1=0,
解得:x=2.
故答案为:2.
【点睛】
本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.
15、﹣1<x≤1
【解析】
解一元一次不等式组.
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
解第一个不等式得,x>﹣1,
解第二个不等式得,x≤1,
∴不等式组的解集是﹣1<x≤1.
16、13
【解析】
试题解析:因为正方形AECF的面积为50cm2,
所以
因为菱形ABCD的面积为120cm2,
所以
所以菱形的边长
故答案为13.
17、84.2
【解析】
小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
三、解答题(共7小题,满分69分)
18、男生有12人,女生有21人.
【解析】
设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.
【详解】
设该兴趣小组男生有x人,女生有y人,
依题意得:,
解得:.
答:该兴趣小组男生有12人,女生有21人.
【点睛】
本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.
19、从甲班抽调了35人,从乙班抽调了1人
【解析】
分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.
详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,
由题意得,45﹣x=2[39﹣(x﹣1)], 解得:x=35, 则x﹣1=35﹣1=1.
答:从甲班抽调了35人,从乙班抽调了1人.
点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.
20、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.
【详解】
原式=,
=,
=,
解方程组得,
所以原式=.
【点睛】
本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.
21、1
【解析】
原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.
【详解】
|﹣1|+(﹣1)2118﹣tan61°
=﹣1+1﹣
=1.
【点睛】
本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.
22、见解析
【解析】
连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
【详解】
证明:连接AF,
∵EF为AB的垂直平分线,
∴AF=BF,
又AB=AC,∠BAC=120°,
∴∠B=∠C=∠BAF=30°,
∴∠FAC=90°,
∴AF=FC,
∴FC=2BF.
【点睛】
本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
23、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
24、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
【解析】
(1)利用对称轴公式求出m的值,即可确定出解析式;
(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
【详解】
(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
(1)当x=﹣时,y=;当x=1时,y=.
∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
∵点A在点B的左侧,∴点A坐标为(﹣6,0).
设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
【点睛】
本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
2023年山东省淄博市周村实验中学中考数学一模模拟试题(原卷版+解析版): 这是一份2023年山东省淄博市周村实验中学中考数学一模模拟试题(原卷版+解析版),文件包含2023年山东省淄博市周村实验中学中考数学一模模拟试题原卷版docx、2023年山东省淄博市周村实验中学中考数学一模模拟试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
2023年山东省淄博市周村实验中学中考数学一模试卷: 这是一份2023年山东省淄博市周村实验中学中考数学一模试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省淄博市桓台县中考数学一模试卷(含解析): 这是一份2024年山东省淄博市桓台县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。