|试卷下载
搜索
    上传资料 赚现金
    山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析01
    山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析02
    山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析

    展开
    这是一份山东省淄博市临淄区重点达标名校2022年中考数学对点突破模拟试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,下列各组数中,互为相反数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
    得分(分)
    60
    70
    80
    90
    100
    人数(人)
    7
    12
    10
    8
    3
    则得分的众数和中位数分别为(  )
    A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
    2.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )

    A.30° B.35° C.40° D.50°
    3.下列计算正确的是(  )
    A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2
    C.a2•a3=a6 D.﹣3a2+2a2=﹣a2
    4.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    5.若关于x的方程=3的解为正数,则m的取值范围是( )
    A.m< B.m<且m≠
    C.m>﹣ D.m>﹣且m≠﹣
    6.下列各组数中,互为相反数的是(  )
    A.﹣1与(﹣1)2 B.(﹣1)2与1 C.2与 D.2与|﹣2|
    7.下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )
    A. B. C. D.
    8.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    9.已知一元二次方程1–(x–3)(x+2)=0,有两个实数根x1和x2(x1 A.–2 10.如图所示是放置在正方形网格中的一个 ,则的值为( )

    A. B. C. D.
    11.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(  )

    A.五丈 B.四丈五尺 C.一丈 D.五尺
    12.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.不等式组的解集为____.
    14.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.

    15.若与是同类项,则的立方根是 .
    16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.

    17.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.

    18.如图,在平面直角坐标系中,抛物线可通过平移变换向__________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.

    (1)a 0, 0(填“>”或“<”);
    (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
    (3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
    20.(6分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.
    (1)求m的取值范围;
    (2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
    21.(6分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
    (1)求抛物线的解析式;
    (2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
    (3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

    22.(8分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.

    23.(8分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
    (1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
    (2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
    (3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
    (4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.

    24.(10分)若关于的方程无解,求的值.
    25.(10分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
    26.(12分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

    27.(12分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.
    (1)利用直尺和圆规在图1确定点P,使得PM=PN;
    (2)设OM=x,ON=x+4,
    ①若x=0时,使P、M、N构成等腰三角形的点P有  个;
    ②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
    故选C.
    【点睛】
    本题考查数据分析.
    2、C
    【解析】
    试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.

    考点:平行线的性质.
    3、D
    【解析】
    根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.
    【详解】
    故选项A错误,
    故选项B错误,
    故选项C错误,
    故选项D正确,
    故选:D.
    【点睛】
    考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.
    4、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    5、B
    【解析】
    解:去分母得:x+m﹣3m=3x﹣9,
    整理得:2x=﹣2m+9,解得:x=,
    已知关于x的方程=3的解为正数,
    所以﹣2m+9>0,解得m<,
    当x=3时,x==3,解得:m=,
    所以m的取值范围是:m<且m≠.
    故答案选B.
    6、A
    【解析】
    根据相反数的定义,对每个选项进行判断即可.
    【详解】
    解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;
    B、(﹣1)2=1,故错误;
    C、2与互为倒数,故错误;
    D、2=|﹣2|,故错误;
    故选:A.
    【点睛】
    本题考查了相反数的定义,解题的关键是掌握相反数的定义.
    7、D
    【解析】
    A、根据函数的图象可知y随x的增大而增大,故本选项错误;
    B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;
    C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;
    D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.
    故选 D.
    【点睛】
    本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.
    8、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
    9、B
    【解析】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.
    【详解】
    设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)
    ∵y=0时,x=-2或x=3,
    ∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),
    ∵1﹣(x﹣3)(x+2)=0,
    ∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,
    ∵-1<0,
    ∴两个抛物线的开口向下,
    ∴x1<﹣2<3<x2,
    故选B.
    【点睛】
    本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.
    10、D
    【解析】
    首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
    【详解】
    解:过点A向CB引垂线,与CB交于D,

    △ABD是直角三角形,
    ∵BD=4,AD=2,
    ∴tan∠ABC=
    故选:D.
    【点睛】
    此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
    11、B
    【解析】
    【分析】根据同一时刻物高与影长成正比可得出结论.
    【详解】设竹竿的长度为x尺,
    ∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
    ∴,
    解得x=45(尺),
    故选B.
    【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
    12、B
    【解析】
    根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
    【详解】
    解:∵一次函数y=ax+b图像过一、二、四,
    ∴a<0,b>0,
    又∵反比例 函数y=图像经过二、四象限,
    ∴c<0,
    ∴二次函数对称轴:>0,
    ∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
    故答案为B.
    【点睛】
    本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x>1
    【解析】
    分别解出两不等式的解集再求其公共解.
    【详解】

    由①得:x>1
    由②得:x>
    ∴不等式组的解集是x>1.
    【点睛】
    求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.
    14、-2 【解析】
    根据图象可直接得到y1>y2>0时x的取值范围.
    【详解】
    根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
    故答案为﹣2<x<﹣0.5.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
    15、2.
    【解析】
    试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.
    考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.
    16、
    【解析】
    ∵DE是BC的垂直平分线,
    ∴DB=DC=2,
    ∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,
    ∴DE=AD=1,
    ∴BE=,
    故答案为 .
    点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    17、2
    【解析】
    连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
    【详解】
    解:如图,连接PB、PC,
    由二次函数的性质,OB=PB,PC=AC,
    ∵△ODA是等边三角形,
    ∴∠AOD=∠OAD=60°,
    ∴△POB和△ACP是等边三角形,
    ∵A(4,0),
    ∴OA=4,
    ∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
    即两个二次函数的最大值之和等于2.
    故答案为2.

    【点睛】
    本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
    18、先向右平移2个单位再向下平移2个单位; 4
    【解析】
    .
    平移后顶点坐标是(2,-2),
    利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
    【解析】
    (1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
    (2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
    (3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
    【详解】
    (1)a>0,>0;
    (2)∵直线x=2是对称轴,A(﹣2,0),
    ∴B(6,0),
    ∵点C(0,﹣4),
    将A,B,C的坐标分别代入,解得:,,,
    ∴抛物线的函数表达式为;
    (3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,

    则四边形ACEF即为满足条件的平行四边形,
    ∵抛物线关于直线x=2对称,
    ∴由抛物线的对称性可知,E点的横坐标为4,
    又∵OC=4,∴E的纵坐标为﹣4,
    ∴存在点E(4,﹣4);
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
    过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
    ∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
    ∵AC∥E′F′,
    ∴∠CAO=∠E′F′G,
    又∵∠COA=∠E′GF′=90°,AC=E′F′,
    ∴△CAO≌△E′F′G,
    ∴E′G=CO=4,
    ∴点E′的纵坐标是4,
    ∴,解得:,,
    ∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).

    20、(1)且,;(2)当m=1时,方程的整数根为0和3.
    【解析】
    (1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
    (2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.
    【详解】
    解:(1)∵关于x的分式方程的根为非负数,
    ∴且.
    又∵,且,
    ∴解得且.
    又∵方程为一元二次方程,
    ∴.
    综上可得:且,.
    (2)∵一元二次方程有两个整数根x1、x2,m为整数,
    ∴x1+x2=3,,
    ∴为整数,∴m=1或.
    又∵且,,
    ∴m1.
    当m=1时,原方程可化为.
    解得:,.
    ∴当m=1时,方程的整数根为0和3.
    【点睛】
    考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.
    21、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
    【解析】
    (1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
    (2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
    (3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
    【详解】
    解:(1)把代入,
    可以求得


    (2)过点作轴分别交线段和轴于点,
    在中,令,得

    设直线的解析式为
    可求得直线的解析式为:
    ∵S四边形ABCD


    当时,有最大值
    此时四边形ABCD面积有最大值
    (3)如图所示,

    如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
    ∵C(0,-3)
    ∴设P1(x,-3)
    ∴x2-x-3=-3,解得x1=0,x2=3,
    ∴P1(3,-3);
    ②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
    ∵C(0,-3)
    ∴设P(x,3),
    ∴x2-x-3=3,
    x2-3x-8=0
    解得x=或x=,
    此时存在点P2(,3)和P3(,3),
    综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
    【点睛】
    此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
    22、(1);(1).
    【解析】
    (1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
    【详解】
    解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
    ∴AB=AE=4,
    ∴DE= ,
    ∴EC=CD-DE=4-1;
    (1)∵sin∠DEA= ,
    ∴∠DEA=30°,
    ∴∠EAB=30°,
    ∴图中阴影部分的面积为:
    S扇形FAB-S△DAE-S扇形EAB=

    【点睛】
    此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.
    23、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
    【解析】
    (1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
    (2)分点Q在BD上方和下方的情况讨论求解即可.
    (3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
    (4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
    【详解】
    解:(1)如图,过点P做PE⊥AD于点E

    由已知,AP=PQ,∠APQ=90°
    ∴△APQ为等腰直角三角形
    ∴∠PAQ=∠PAB=45°
    设PE=x,则AE=x,DE=4﹣x
    ∵PE∥AB
    ∴△DEP∽△DAB
    ∴=
    ∴=
    解得x=
    ∴PA=PE=
    ∴弧AQ的长为•2π•=π.
    故答案为45,,π.
    (2)如图,过点Q做QF⊥BD于点F

    由∠APQ=90°,
    ∴∠APP0+∠QPD=90°
    ∵∠P0AP+∠APP0=90°
    ∴∠QPD=∠P0AP
    ∵AP=PQ
    ∴△APP0≌△PQF
    ∴AP0=PF,P0P=QF
    ∵AP0=P0Q0
    ∴Q0D=P0P
    ∴QF=FQ0
    ∴∠QQ0D=45°.
    当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
    此时∠QQ0D=135°,

    综上所述,满足条件的∠QQ0D为45°或135°.
    (3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
    过点Q做QF⊥BD于点F,则QF=BP

    由(2)可知,PP0=BP
    ∴BP0=BP
    ∵AB=3,AD=4
    ∴BD=5
    ∵△ABP0∽△DBA
    ∴AB2=BP0•BD
    ∴9=BP×5
    ∴BP=
    同理,当点Q位于BD下方时,可求得BP=
    故BP的长为或
    (4)由(2)可知∠QQ0D=45°

    则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
    当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
    当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
    ∴EF===5
    过点C做CH⊥EF于点H
    由面积法可知
    CH===
    ∴CQ的取值范围为:≤CQ≤7
    【点睛】
    本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
    24、
    【解析】
    分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.
    详解:去分母得:x(x-a)-1(x-1)=x(x-1),
    去括号得:x2-ax-1x+1=x2-x,
    移项合并得:(a+2)x=1.
    (1)把x=0代入(a+2)x=1,
    ∴a无解;
    把x=1代入(a+2)x=1,
    解得a=1;
    (2)(a+2)x=1,
    当a+2=0时,0×x=1,x无解
    即a=-2时,整式方程无解.
    综上所述,当a=1或a=-2时,原方程无解.
    故答案为a=1或a=-2.
    点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.
    25、原式=,当m=l时,原式=
    【解析】
    先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
    解:原式=
    ∵x2+2x-3=0, ∴x1=-3,x2 =1
    ∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
    ∵m+3≠0, ∴.m≠-3, ∴m=1
    当m=l时,原式:
    “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
    26、水坝原来的高度为12米
    【解析】
    试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
    试题解析:设BC=x米,
    在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
    在Rt△EBD中,
    ∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
    即2+x=4+,解得x=12,即BC=12,
    答:水坝原来的高度为12米..
    考点:解直角三角形的应用,坡度.
    27、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;
    【解析】
    (1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.
    【详解】
    解:(1)如图所示:

    (2)①如图所示:

    故答案为1.
    ②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,

    ∴MC⊥OB,
    ∵∠AOB=45°,
    ∴△MCO是等腰直角三角形,
    ∴MC=OC=4,

    当M与D重合时,即时,同理可知:点P恰好有三个;
    如图4,取OM=4,以M为圆心,以OM为半径画圆.

    则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
    点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
    ∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
    综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或
    故答案为x=0或或
    【点睛】
    本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.

    相关试卷

    山东省淄博市临淄区召口乡中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份山东省淄博市临淄区召口乡中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了一组数据等内容,欢迎下载使用。

    山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析: 这是一份山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,函数的自变量x的取值范围是等内容,欢迎下载使用。

    2022年山东省淄博市高青县重点中学中考数学对点突破模拟试卷含解析: 这是一份2022年山东省淄博市高青县重点中学中考数学对点突破模拟试卷含解析,共18页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map