山东省济南市槐荫区重点达标名校2022年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
2.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
4.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )
A. B. C. D.6
5.反比例函数是y=的图象在( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
6.下列图形中,可以看作中心对称图形的是( )
A. B. C. D.
7.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是( )
A.r<5 B.r>5 C.r<10 D.5<r<10
8.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
9.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
10.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是
A. B. C. D.
11.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
12.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于的方程有两个不相等的实数根,那么的取值范围是__________.
14.分解因式:2x3﹣4x2+2x=_____.
15.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是 .
16.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
17.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.
18.计算:6﹣=_____
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
20.(6分)已知关于x的方程x2-(m+2)x+(2m-1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
21.(6分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
22.(8分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
23.(8分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.
24.(10分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
(1)求该抛物线的表达式和∠ACB的正切值;
(2)如图2,若∠ACP=45°,求m的值;
(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.
25.(10分)先化简,再求值:,其中a满足a2+2a﹣1=1.
26.(12分)先化简,再计算: 其中.
27.(12分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
2、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
3、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
4、A
【解析】
根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.
【详解】
∵在矩形ABCD中,AB=4,BC=3,F是AB中点,
∴BF=BG=2,
∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,
∴S1-S2=4×3-=,
故选A.
【点睛】
本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5、B
【解析】
解:∵反比例函数是y=中,k=2>0,
∴此函数图象的两个分支分别位于一、三象限.
故选B.
6、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选:B.
【点睛】
此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【解析】
延长CD交⊙D于点E,
∵∠ACB=90°,AC=12,BC=9,∴AB==15,
∵D是AB中点,∴CD=,
∵G是△ABC的重心,∴CG==5,DG=2.5,
∴CE=CD+DE=CD+DF=10,
∵⊙C与⊙D相交,⊙C的半径为r,
∴ ,
故选D.
【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
8、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
9、B
【解析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故选B.
【点睛】
本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
10、B
【解析】
根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.
【详解】
已知给出的三角形的各边AB、CB、AC分别为、2、、
只有选项B的各边为1、、与它的各边对应成比例.故选B.
【点晴】
此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.
11、B
【解析】
根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.
【详解】
解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,
掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是≈0.17,故B选项正确,
一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,
抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,
故选B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
12、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、且
【解析】
分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
14、2x(x-1)2
【解析】
2x3﹣4x2+2x=
15、1
【解析】
分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣ )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可.
详解:∵a2﹣a﹣1=0,即a2﹣a=1,
∴原式=
=
=a(a﹣1)
=a2﹣a=1,
故答案为1
点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.
16、k≥-1
【解析】
首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
【详解】
当时,方程是一元一次方程:,方程有实数根;
当时,方程是一元二次方程,
解得:且.
综上所述,关于的方程有实数根,则的取值范围是.
故答案为
【点睛】
考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
这种情况.
17、1-1
【解析】
设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入阴影部分的面积是(y﹣x)x求出即可.
【详解】
设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x,y=1,则阴影部分的面积是(y﹣x)x=(11.
故答案为11.
【点睛】
本题考查了二次根式的应用,主要考查学生的计算能力.
18、3
【解析】
按照二次根式的运算法则进行运算即可.
【详解】
【点睛】
本题考查的知识点是二次根式的运算,解题关键是注意化简算式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
【解析】
(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
【详解】
(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
令y=0,得到:x2﹣4x﹣5=0,
解得x=﹣1或5,
∴A(﹣1,0),B(5,0).
(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
把点Q′坐标代入y=﹣x2+4x+5,
得到:m2﹣4m﹣5=﹣m2﹣4m+5,
∴m=或(舍弃),
∴Q(,).
(Ⅲ)如图,作MK⊥对称轴x=2于K.
①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
∵此时点M的横坐标为1,
∴y=8,
∴M(1,8),N(2,13),
②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
此时M′的横坐标为3,可得M′(3,8),N′(2,3).
【点睛】
本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
20、(1)见详解;(2)4+或4+.
【解析】
(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.
(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.
【详解】
解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.
∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.
(2)∵此方程的一个根是1,
∴12-1×(m+2)+(2m-1)=0,解得,m=2,
则方程的另一根为:m+2-1=2+1=3.
①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.
②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.
21、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
22、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
【详解】
(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
∵CA=CE,CB=CF,∴AE=BF.
∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
【点睛】
本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
23、见解析
【解析】
先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
【详解】
证明:如图,连接AC.
∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
∴∠EAC=∠FCA.
∵AE=CF,AC=CA, ∴△EAC≌△FCA,
∴∠ECA=∠FAC, ∴GA=GC,
∴点G在AC的中垂线上,
∴点G在BD上.
【点睛】
此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
24、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
【解析】
(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
(3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
【详解】
解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
解得:;
∴该抛物线的解析式为y=x2﹣3x+1,
过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.
∵∠COA=∠G=90°,∠CAO=∠BAG,
∴△GAB∽△OAC.
∴=2.
∴BG=2AG,
在Rt△ABG中,∵BG2+AG2=AB2,
∴(2AG)2+AG2=22,解得: AG=.
∴BG=,CG=AC+AG=2+=.
在Rt△BCG中,tan∠ACB═.
(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.
应用“全角夹半角”可得AK=OA+HK,
设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
∴22+h2=(6﹣h)2.解得h=,
∴点K(1,),
设直线CK的解析式为y=hx+1,
将点K(1,)代入上式,得=1h+1.解得h=﹣,
∴直线CK的解析式为y=﹣x+1,
设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
将方程整理,得3x2﹣16x=0,
解得x1=,x2=0(不合题意,舍去)
将x1=代入y=﹣x+1,得y=,
∴点P的坐标为(,),
∴m=;
(3)四边形ADMQ是平行四边形.理由如下:
∵CD∥x轴,
∴yC=yD=1,
将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
解得x1=0,x2=6,
∴点D(6,1),
根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
①当1<m<6时,DM=6﹣m,
如图3,
∵△OAN∽△HAP,
∴,
∴=,
∴ON===m﹣1,
∵△ONQ∽△HMQ,
∴,
∴,
∴,
∴OQ=m﹣1,
∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
∴AQ=DM=6﹣m,
又∵AQ∥DM,
∴四边形ADMQ是平行四边形.
②当m>6时,同理可得:四边形ADMQ是平行四边形.
综上,四边形ADMQ是平行四边形.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
25、a2+2a,2
【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
【详解】
解:
=
=
=a(a+2)
=a2+2a,
∵a2+2a﹣2=2,
∴a2+2a=2,
∴原式=2.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
26、;
【解析】
根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可.
【详解】
解:
=
=
=
=
当时,原式=.
【点睛】
此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键.
27、(1)且;(2),.
【解析】
(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.
【详解】
(1)∵
.
解得且.
(2)∵为正整数,
∴.
∴原方程为.
解得,.
【点睛】
考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
2024年山东省济南市槐荫区中考数学二模试卷(含详细答案解析): 这是一份2024年山东省济南市槐荫区中考数学二模试卷(含详细答案解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省济南市槐荫区中考二模考试数学试题及答案: 这是一份2023年山东省济南市槐荫区中考二模考试数学试题及答案,共15页。
2023年山东省济南市槐荫区中考数学三模试卷(含解析): 这是一份2023年山东省济南市槐荫区中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。