初中数学冀教版八年级上册12.5 分式方程的应用精品一课一练
展开2022-2023年冀教版数学八年级上册12.5
《分式方程的应用》课时练习
一 、选择题
1.甲、乙两队同时分别从A、B两地沿同一条公路骑自行车到C地,已知A、C两地间的距离为110千米,B、C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )
A.= B.= C.= D.=
2.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x个,依题意列方程为( )
A.﹣=5 B.﹣=5
C.﹣=5 D.
3.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是( )
A. +2= B.﹣2
C. =2 D. =2
4.甲、乙两个救援队向相距50千米某地震灾区送救援物资,已知甲救援队的平均速度是乙救援队平均速度的2倍,乙救援队出发40分钟后,甲救援队才出发,结果甲救援队比乙救援队早到20分钟.若设乙救援队的平均速度为x千米/小时,则方程可列为( )
A. += B. +1= C.﹣= D.﹣1=
5.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为( )
A.﹣=1 B.﹣=1
C.﹣=1 D.﹣=1
6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为( )
A. +=2 B.﹣=2
C. += D.﹣=
7.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg,甲搬运5 000 kg所用时间与乙搬运8 000 kg所用时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg货物,则可列方程为( )
A.= B.=
C.= D.=
8.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x千米/时,则下列方程正确的是( )
A.+1.8= B.-1.8=
C.+1.5= D.-1.5=
9.某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是( )
A.足球的单价 B.篮球的单价 C.足球的数量 D.篮球的数量
10.一项工程需在规定日期完成,如果甲队单独做,就要超过规定日期1天,如果乙队单独做,要超过规定日期4天.现在先由甲、乙两队一起做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为( )
A.6天 B.8天 C.10天 D.7.5天
二 、填空题
11.小成每周末要到离家5 km的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h,根据题意列方程为_______.
12.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用1.5小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为 .
13.某市今年起调整居民用水价格,每立方米水费上涨20%,小方家去年12月份的水费是26元,而今年5月份的水费是50元.已知小方家今年5月份的用水量比去年12月份多8立方米,设去年居民用水价格为x元/立方米,则所列方程为________________.
14.某学校组织学生到距离学校45千米的金城山森林公园秋游,先遣车队与学生车队同时出发,先遣车队比学生车队提前半小时到达公园以便提前做好准备工作.已知先遣车队的速度是学生车队速度的1.5倍,若设学生车队的速度为x千米/时,则列出的方程是 .
15.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数时甲车的2倍,则甲车单独运完此堆垃圾需要运的趟数为 .
16.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是 km/h.
三 、解答题
17.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
18.元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;
(1)贺年卡的零售价是多少?
(2)班里有多少学生?
19.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为50000元,今年销售总额将比去年减少20%,每辆销售价比去年降低400元,若这两年卖出的数量相同.A,B两种型号车今年的进货和销售价格表:
| A型车 | B型车 |
进货价格(元) | 1100 | 1400 |
销售价格(元) | 今年的销售价格 | 2000 |
(1)求今年A型车每辆售价多少元?
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,求销售这批车获得的最大利润是多少元.
20.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.
(1)求A、B两种粽子的单价各是多少?
(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?
参考答案
1.A
2.A
3.D.
4.B.
5.A
6.B
7.B
8.D;
9.D.
10.B.
11.答案为:=+.
12.答案为:﹣=.
13.答案为:-=8
14.答案为:﹣=.
15.答案为:15.
16.答案为:80km/h.
17.解:设该地驻军原来每天加固的米数为x米.
根据题意得解:设该地驻军原来每天加固的米数为x米.
根据题意得
解得x=300
经检验x=300是原分式方程的解
答:该地驻军原来每天加固的米数为300米.
18.解:(1)设零售价为5x元,团购价为4x元,
则解得,,
经检验:x=是原分式方程的解,
5x=2.5
答:零售价为2.5元;
(2)学生数为=38(人)
答:王老师的班级里有38名学生.
19.解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,
由题意,得:=,解得:x=1600,
经检验,x=1600是原方程的根.
答:今年A型车每辆售价1600元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣100a+36000.
∴a=20时,y最大=34000元.
∴B型车的数量为:60﹣20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
20.解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,
根据题意,得: +=1100,解得:x=2.5,
经检验,x=2.5是原方程的解,且符合题意,
∴1.2x=3.
答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.
(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,
依题意,得:3m+2.5(2600﹣m)≤7000,
解得:m≤1000.
答:A种粽子最多能购进1000个.
初中12.5 分式方程的应用课后作业题: 这是一份初中12.5 分式方程的应用课后作业题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
八年级上册第十二章 分式和分式方程12.5 分式方程的应用优秀同步测试题: 这是一份八年级上册第十二章 分式和分式方程12.5 分式方程的应用优秀同步测试题,共8页。试卷主要包含了5 分式方程的应用》同步练习等内容,欢迎下载使用。
初中数学12.5 分式方程的应用测试题: 这是一份初中数学12.5 分式方程的应用测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。