![2022-2023年冀教版数学九年级上册26.4《解直角三角形的应用》课时练习(含答案)01](http://www.enxinlong.com/img-preview/2/3/13565020/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023年冀教版数学九年级上册26.4《解直角三角形的应用》课时练习(含答案)02](http://www.enxinlong.com/img-preview/2/3/13565020/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023年冀教版数学九年级上册26.4《解直角三角形的应用》课时练习(含答案)03](http://www.enxinlong.com/img-preview/2/3/13565020/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年26.4 解直角三角形的应用优秀课堂检测
展开一、选择题
1.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是( )
A.5sin36°米 B.5cs36°米 C.5tan36°米 D.10tan36°米
2.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cs α=,则小车上升的高度是( )
A.5米 B.6米 C.6.5米 D.12米
3.如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A约为5゜28′,塔身AB的长为54.5m,则塔顶中心偏离垂直中心线的距离BC是( )
A.54.5×sin5°28′m B.54.5×cs5°28′m
C.54.5×tan5°28'm D. m
4.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)
A.30.6 B.32.1 C.37.9 D.39.4
5.周末,身高都为1.6 m的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角ɑ为45°,小丽站在B处测得她看塔顶的仰角β为30°.她们又测出A,B两点的距离为30 m.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01)( )
m m m m
6.如图,河堤横断面迎水坡AB的坡比是1:eq \r(3),堤高BC=5m,则坡面AB的长是( )
A.10m B.10eq \r(3)m C.15m D.5eq \r(3)m
7.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底端G为BC的中点,则矮建筑物的高CD为( )
A.20米 B.10 米 C.15 米 D.5 米
8.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( )
A.4km B.(2+eq \r(2))km C.2eq \r(2) km D.(4-eq \r(2))km
9.如图,A,B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠BAC=90°,∠ACB=40°,则AB等于( )
A.asin40°米 B.acs40°米 C.atan40°米 D.eq \f(a,tan40°)米
10.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )
A.()米 B.12米 C.()米 D.10米
二、填空题
11.如图,为测量某物体AB的高度,在在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为 米.
12.如图,某河堤的横断面是梯形ABCD,BC//AD,迎水坡AD长13米,且斜坡AB的坡度为2.4,则河堤的高BE为 米.
13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是 海里(结果保留根号).
14.如图,在高度是21米的小山A处测得建筑物CD顶部C处的仰角为30°,底部D处的俯角为45°,则这个建筑物的高度CD= 米(结果可保留根号)
15.如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,则求该塔的高度为 米.(参考数据:eq \r(2)≈1.41,eq \r(3)≈1.73)
16.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为 cm(参考数据sin20°≈0.342,cs20°≈0.940,sin40°≈0.643,cs40°≈0.766,结果精确到0.1cm,可用科学计算器).
三、解答题
17.如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°,请你计算车位所占的宽度EF约为多少米?(结果保留两位有效数字.)
18.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).
问:打通长江路后从A地道B地可少走多少路程?(参考数据:eq \r(2)≈1.4,eq \r(3)≈1.7)
19.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cs65°≈0.42,tan65°≈2.14)
20.某中学广场上有旗杆如图①所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米,参考数据:sin72°≈0.95,cs72°≈0.31,tan72°≈3.08).
参考答案
1.C;
2.A;
3.A
4.D
5.D
6.A
7.A
8.B
9.C
10.A
11.答案为:10eq \r(3)
12.答案为:12
13.答案为:6eq \r(3).
14.答案为:21+7eq \r(3).
15.答案为:18.8米
16.答案为:14.1.
17.解:在直角三角形DCF中,
∵CD=5.4m,∠DCF=30°,∴sin∠DCF==,∴DF=2.7,
∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°,∴∠ADE=∠DCF,
∵AD=BC=2,∴cs∠ADE===, ∴DE= ,∴EF=ED+DF=2.7+1.732≈4.4米.
18.解:如图所示:过点C作CD⊥AB于点D,
在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10eq \r(3)km,
在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10eq \r(2)km,
则AC+BC﹣AB=20+10eq \r(2)﹣10eq \r(3)﹣10≈7(km),
答:打通长江路后从A地道B地可少走7km的路程.
19.解:过点D作DE⊥AC,垂足为E,设BE=x,
在Rt△DEB中,tan∠DBE=eq \f(DE,BE).
∵∠DBC=65°,∴DE=xtan65°.
又∵∠DAC=45°,∴AE=DE.
∴132+x=xtan65°,解得x≈115.8.
∴DE≈248米.
答:观景亭D到南滨河路AC的距离约为248米.
20.解:
初中数学冀教版九年级上册26.4 解直角三角形的应用随堂练习题: 这是一份初中数学冀教版九年级上册26.4 解直角三角形的应用随堂练习题,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
冀教版26.4 解直角三角形的应用课后复习题: 这是一份冀教版26.4 解直角三角形的应用课后复习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
冀教版九年级上册第26章 解直角三角形26.4 解直角三角形的应用课后测评: 这是一份冀教版九年级上册第26章 解直角三角形26.4 解直角三角形的应用课后测评,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。